Skip to main content

Advertisement

Log in

A novel subtype classification and risk of breast cancer by histone modification profiling

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Breast cancer has been classified into several intrinsic molecular subtypes on the basis of genetic and epigenetic factors. However, knowledge about histone modifications that contribute to the classification and development of biologically distinct breast cancer subtypes remains limited. Here we compared the genome-wide binding patterns of H3K4me3 and H3K27me3 between human mammary epithelial cells and three breast cancer cell lines representing the luminal, HER2, and basal subtypes. We characterized thousands of unique binding events as well as bivalent chromatin signatures unique to each cancer subtype, which were involved in different epigenetic regulation programs and signaling pathways in breast cancer progression. Genes linked to the unique histone mark features exhibited subtype-specific expression patterns, both in cancer cell lines and primary tumors, some of which were confirmed by qPCR in our primary cancer samples. Finally, histone mark-based gene classifiers were significantly correlated with relapse-free survival outcomes in patients. In summary, we have provided a valuable resource for the identification of novel biomarkers of subtype classification and clinical prognosis evaluation in breast cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90. doi:10.3322/caac.20107

    Article  PubMed  Google Scholar 

  2. O’Brien KM, Cole SR, Tse CK, Perou CM, Carey LA, Foulkes WD, Dressler LG, Geradts J, Millikan RC (2010) Intrinsic breast tumor subtypes, race, and long-term survival in the Carolina Breast Cancer Study. Clin Cancer Res 16(24):6100–6110. doi:10.1158/1078-0432.CCR-10-1533

    Article  PubMed  PubMed Central  Google Scholar 

  3. Su Y, Subedee A, Bloushtain-Qimron N, Savova V, Krzystanek M, Li L, Marusyk A, Tabassum DP, Zak A, Flacker MJ, Li M, Lin JJ, Sukumar S, Suzuki H, Long H, Szallasi Z, Gimelbrant A, Maruyama R, Polyak K (2015) Somatic cell fusions reveal extensive heterogeneity in basal-like breast cancer. Cell Rep 11(10):1549–1563. doi:10.1016/j.celrep.2015.05.011

    Article  CAS  PubMed  Google Scholar 

  4. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, Baehner FL, Walker MG, Watson D, Park T, Hiller W, Fisher ER, Wickerham DL, Bryant J, Wolmark N (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351(27):2817–2826. doi:10.1056/NEJMoa041588

    Article  CAS  PubMed  Google Scholar 

  5. Chin K, DeVries S, Fridlyand J, Spellman PT, Roydasgupta R, Kuo WL, Lapuk A, Neve RM, Qian Z, Ryder T, Chen F, Feiler H, Tokuyasu T, Kingsley C, Dairkee S, Meng Z, Chew K, Pinkel D, Jain A, Ljung BM, Esserman L, Albertson DG, Waldman FM, Gray JW (2006) Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10(6):529–541. doi:10.1016/j.ccr.2006.10.009

    Article  CAS  PubMed  Google Scholar 

  6. Perou CM (2011) Molecular stratification of triple-negative breast cancers. Oncologist 16(Suppl 1):61–70. doi:10.1634/theoncologist.2011-S1-61

    Article  PubMed  Google Scholar 

  7. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, Davies S, Fauron C, He X, Hu Z, Quackenbush JF, Stijleman IJ, Palazzo J, Marron JS, Nobel AB, Mardis E, Nielsen TO, Ellis MJ, Perou CM, Bernard PS (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27(8):1160–1167. doi:10.1200/JCO.2008.18.1370

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Lonning PE, Borresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874. doi:10.1073/pnas.191367098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536. doi:10.1038/415530a

    Article  Google Scholar 

  10. Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70. doi:10.1038/nature11412

    Article  Google Scholar 

  11. Campbell IG, Russell SE, Choong DY, Montgomery KG, Ciavarella ML, Hooi CS, Cristiano BE, Pearson RB, Phillips WA (2004) Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res 64(21):7678–7681. doi:10.1158/0008-5472.CAN-04-2933

    Article  CAS  PubMed  Google Scholar 

  12. Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K, Karaca G, Troester MA, Tse CK, Edmiston S, Deming SL, Geradts J, Cheang MC, Nielsen TO, Moorman PG, Earp HS, Millikan RC (2006) Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295(21):2492–2502. doi:10.1001/jama.295.21.2492

    Article  CAS  PubMed  Google Scholar 

  13. Bediaga NG, Acha-Sagredo A, Guerra I, Viguri A, Albaina C, Ruiz Diaz I, Rezola R, Alberdi MJ, Dopazo J, Montaner D, Renobales M, Fernandez AF, Field JK, Fraga MF, Liloglou T, de Pancorbo MM (2010) DNA methylation epigenotypes in breast cancer molecular subtypes. Breast Cancer Research BCR 12(5):R77. doi:10.1186/bcr2721

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dedeurwaerder S, Desmedt C, Calonne E, Singhal SK, Haibe-Kains B, Defrance M, Michiels S, Volkmar M, Deplus R, Luciani J, Lallemand F, Larsimont D, Toussaint J, Haussy S, Rothe F, Rouas G, Metzger O, Majjaj S, Saini K, Putmans P, Hames G, van Baren N, Coulie PG, Piccart M, Sotiriou C, Fuks F (2011) DNA methylation profiling reveals a predominant immune component in breast cancers. EMBO Mol Med 3(12):726–741. doi:10.1002/emmm.201100801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chaligne R, Popova T, Mendoza-Parra MA, Saleem MA, Gentien D, Ban K, Piolot T, Leroy O, Mariani O, Gronemeyer H, Vincent-Salomon A, Stern MH, Heard E (2015) The inactive X chromosome is epigenetically unstable and transcriptionally labile in breast cancer. Genome Res 25(4):488–503. doi:10.1101/gr.185926.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. van Geldermalsen M, Wang Q, Nagarajah R, Marshall AD, Thoeng A, Gao D, Ritchie W, Feng Y, Bailey CG, Deng N, Harvey K, Beith JM, Selinger CI, O’Toole SA, Rasko JE, Holst J (2015) ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer. Oncogene. doi:10.1038/onc.2015.381

    PubMed  Google Scholar 

  17. Scharer CD, McCabe CD, Ali-Seyed M, Berger MF, Bulyk ML, Moreno CS (2009) Genome-wide promoter analysis of the SOX4 transcriptional network in prostate cancer cells. Cancer Res 69(2):709–717. doi:10.1158/0008-5472.CAN-08-3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Parvani JG, Schiemann WP (2013) Sox4, EMT programs, and the metastatic progression of breast cancers: mastering the masters of EMT. Breast cancer research BCR 15(4):R72. doi:10.1186/bcr3466

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125(2):315–326. doi:10.1016/j.cell.2006.02.041

    Article  CAS  PubMed  Google Scholar 

  20. Voigt P, Tee WW, Reinberg D (2013) A double take on bivalent promoters. Genes Dev 27(12):1318–1338. doi:10.1101/gad.219626.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Peng F, Zhang Y, Wang R, Zhou W, Zhao Z, Liang H, Qi L, Zhao W, Wang H, Wang C, Guo Z, Gu Y (2016) Identification of differentially expressed miRNAs in individual breast cancer patient and application in personalized medicine. Oncogenesis 5:e194. doi:10.1038/oncsis.2016.4

    Article  CAS  PubMed  Google Scholar 

  22. Markou A, Yousef GM, Stathopoulos E, Georgoulias V, Lianidou E (2014) Prognostic significance of metastasis-related microRNAs in early breast cancer patients with a long follow-up. Clin Chem 60(1):197–205. doi:10.1373/clinchem.2013.210542

    Article  CAS  PubMed  Google Scholar 

  23. Su X, Malouf GG, Chen Y, Zhang J, Yao H, Valero V, Weinstein JN, Spano JP, Meric-Bernstam F, Khayat D, Esteva FJ (2014) Comprehensive analysis of long non-coding RNAs in human breast cancer clinical subtypes. Oncotarget 5(20):9864–9876

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fleischer T, Frigessi A, Johnson KC, Edvardsen H, Touleimat N, Klajic J, Riis ML, Haakensen VD, Warnberg F, Naume B, Helland A, Borresen-Dale AL, Tost J, Christensen BC, Kristensen VN (2014) Genome-wide DNA methylation profiles in progression to in situ and invasive carcinoma of the breast with impact on gene transcription and prognosis. Genome Biol 15(8):435. doi:10.1186/PREACCEPT-2333349012841587

    PubMed  PubMed Central  Google Scholar 

  25. Ulirsch J, Fan C, Knafl G, Wu MJ, Coleman B, Perou CM, Swift-Scanlan T (2013) Vimentin DNA methylation predicts survival in breast cancer. Breast Cancer Res Treat 137(2):383–396. doi:10.1007/s10549-012-2353-5

    Article  CAS  PubMed  Google Scholar 

  26. Jansen MP, Knijnenburg T, Reijm EA, Simon I, Kerkhoven R, Droog M, Velds A, van Laere S, Dirix L, Alexi X, Foekens JA, Wessels L, Linn SC, Berns EM, Zwart W (2013) Hallmarks of aromatase inhibitor drug resistance revealed by epigenetic profiling in breast cancer. Cancer Res 73(22):6632–6641. doi:10.1158/0008-5472.CAN-13-0704

    Article  CAS  PubMed  Google Scholar 

  27. Marjanovic ND, Weinberg RA, Chaffer CL (2013) Poised with purpose: cell plasticity enhances tumorigenicity. Cell Cycle 12(17):2713–2714. doi:10.4161/cc.26075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bapat SA, Jin V, Berry N, Balch C, Sharma N, Kurrey N, Zhang S, Fang F, Lan X, Li M, Kennedy B, Bigsby RM, Huang TH, Nephew KP (2010) Multivalent epigenetic marks confer microenvironment-responsive epigenetic plasticity to ovarian cancer cells. Epigenetics 5(8):716–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rodriguez J, Munoz M, Vives L, Frangou CG, Groudine M, Peinado MA (2008) Bivalent domains enforce transcriptional memory of DNA methylated genes in cancer cells. Proc Natl Acad Sci USA 105(50):19809–19814. doi:10.1073/pnas.0810133105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2006) REporting recommendations for tumor MARKer prognostic studies (REMARK). Breast Cancer Res Treat 100(2):229–235. doi:10.1007/s10549-006-9242-8

    Article  PubMed  Google Scholar 

  31. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25. doi:10.1186/gb-2009-10-3-r25

    Article  PubMed  PubMed Central  Google Scholar 

  32. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38(4):576–589. doi:10.1016/j.molcel.2010.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6):841–842. doi:10.1093/bioinformatics/btq033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29(1):24–26. doi:10.1038/nbt.1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25(9):1105–1111. doi:10.1093/bioinformatics/btp120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Anders S, Pyl PT, Huber W (2015) HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31(2):166–169. doi:10.1093/bioinformatics/btu638

    Article  PubMed  PubMed Central  Google Scholar 

  37. McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, Wenger AM, Bejerano G (2010) GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol 28(5):495–501. doi:10.1038/nbt.1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57. doi:10.1038/nprot.2008.211

    Article  CAS  Google Scholar 

  39. Mi H, Muruganujan A, Casagrande JT, Thomas PD (2013) Large-scale gene function analysis with the PANTHER classification system. Nat Protoc 8(8):1551–1566. doi:10.1038/nprot.2013.092

    Article  PubMed  Google Scholar 

  40. Wilkerson MD, Hayes DN (2010) ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics 26(12):1572–1573. doi:10.1093/bioinformatics/btq170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the respective authors for their contributions to generate the sequencing data, as well as all the people who participated in this study and helped us successfully complete the research. This work was supported by the National Natural Science Foundation of China (Grant No. 81372077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maoguo Shu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Xiaohua Chen and Hanyang Hu have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Hu, H., He, L. et al. A novel subtype classification and risk of breast cancer by histone modification profiling. Breast Cancer Res Treat 157, 267–279 (2016). https://doi.org/10.1007/s10549-016-3826-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-016-3826-8

Keywords

Navigation