Skip to main content

Advertisement

Log in

Selection and evolution in the genomic landscape of copy number alterations in ductal carcinoma in situ (DCIS) and its progression to invasive carcinoma of ductal/no special type: a meta-analysis

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Ductal carcinoma in situ (DCIS) is a pre-invasive malignancy detected with an increasing frequency through screening mammography. One of the primary aims of therapy is to prevent local recurrence, as in situ or as invasive carcinoma, the latter arising in half of the recurrent cases. Reliable biomarkers predictive of its association with recurrence, particularly as invasive disease, are however lacking. In this study, we perform a meta-analysis of 26 studies which report somatic copy number aberrations (SCNAs) in 288 cases of ‘pure’ DCIS and 328 of DCIS associated with invasive carcinoma, along with additional unmatched cases of 145 invasive carcinoma of ductal/no special type (IDC) and 50 of atypical ductal hyperplasia (ADH). SCNA frequencies across the genome were calculated at cytoband resolution (UCSC genome build 19) to maximally utilize the available information in published literature. Fisher’s exact test was used to identify significant differences in the gain–loss distribution in each cytoband in different group comparisons. We found synchronous DCIS to be at a more advanced stage of genetic aberrations than pure DCIS and was very similar to IDC. Differences in gains and losses in each disease process (i.e. invasive or in situ) at each cytoband were used to infer evidence of selection and conservation for each cytoband and to define an evolutionary conservation scale (ECS) as a tool to identify and distinguish driver SCNA from the passenger SCNA. Using ECS, we have identified aberrations that show evidence of selection from the early stages of neoplasia (i.e. in ADH and pure DCIS) and persist in IDC; we postulate these to be driver aberrations and that their presence may predict progression to invasive disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Erbas B, Provenzano E, Armes J, Gertig D (2006) The natural history of ductal carcinoma in situ of the breast: a review. Breast Cancer Res Treat 97(2):135–144. doi:10.1007/s10549-005-9101-z

    Article  PubMed  Google Scholar 

  2. Sanders ME, Schuyler PA, Dupont WD, Page DL (2005) The natural history of low-grade ductal carcinoma in situ of the breast in women treated by biopsy only revealed over 30 years of long-term follow-up. Cancer 103(12):2481–2484. doi:10.1002/cncr.21069

    Article  PubMed  Google Scholar 

  3. Collins LC, Tamimi RM, Baer HJ, Connolly JL, Colditz GA, Schnitt SJ (2005) Outcome of patients with ductal carcinoma in situ untreated after diagnostic biopsy: results from the Nurses’ Health Study. Cancer 103(9):1778–1784. doi:10.1002/cncr.20979

    Article  PubMed  Google Scholar 

  4. Lari SA, Kuerer HM (2011) Biological markers in DCIS and risk of breast recurrence: a systematic review. J Cancer 2:232–261

    Article  PubMed Central  PubMed  Google Scholar 

  5. Kerlikowske K (2010) Epidemiology of ductal carcinoma in situ. J Natl Cancer Inst Monogr 2010(41):139–141. doi:10.1093/jncimonographs/lgq027

    Article  PubMed  Google Scholar 

  6. Gao Y, Niu Y, Wang X, Wei L, Lu S (2009) Genetic changes at specific stages of breast cancer progression detected by comparative genomic hybridization. J Mol Med 87(2):145–152. doi:10.1007/s00109-008-0408-1

    Article  CAS  PubMed  Google Scholar 

  7. Schmitt MW, Prindle MJ, Loeb LA (2012) Implications of genetic heterogeneity in cancer. Ann N Y Acad Sci 1267:110–116. doi:10.1111/j.1749-6632.2012.06590.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Wang Y, Waters J, Leung ML, Unruh A, Roh W, Shi X, Chen K, Scheet P, Vattathil S, Liang H, Multani A, Zhang H, Zhao R, Michor F, Meric-Bernstam F, Navin NE (2014) Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512(7513):155–160. doi:10.1038/nature13600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Kaminker J, Zhang Y, Waugh A et al (2007) Distinguishing cancer-associated missense mutations from common polymorphisms. Cancer Res 67(2):465

    Article  CAS  PubMed  Google Scholar 

  10. Futreal PA (2007) Backseat drivers take the wheel. Cancer Cell 12(6):493

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Park SY, Gonen M, Kim HJ, Michor F, Polyak K (2010) Cellular and genetic diversity in the progression of in situ human breast carcinomas to an invasive phenotype. J Clin Investig 120(2):636–644. doi:10.1172/JCI40724

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. The Cancer Genome Atlas https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp. Accessed 30 May 2014

  13. Catalogue of Somatic Mutations in Cancer (COSMIC) https://cancer.sanger.ac.uk/cancergenome/projects/cosmic/. Accessed 30 May 2014

  14. Cancer Genome Project https://www.sanger.ac.uk/research/projects/cancergenome/copy_number.html. Accessed 30 May 2014

  15. Baudis M (2001-2014) Progenetix oncogenomic online resource: www.progenetix.org

  16. Baudis M, Cleary ML (2001) Progenetix.net: an online repository for molecular cytogenetic aberration data. Bioinformatics 17(12):1228–1229

    Article  CAS  PubMed  Google Scholar 

  17. Colak D, Nofal A, Albakheet A, Nirmal M, Jeprel H, Eldali A, Al-Tweigeri T, Tulbah A, Ajarim D, Malik OA, Inan MS, Kaya N, Park BH, Bin Amer SM (2013) Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. PLoS One 8(5):e63204. doi:10.1371/journal.pone.0063204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Kristensen VN, Vaske CJ, Ursini-Siegel J, Van Loo P, Nordgard SH, Sachidanandam R, Sorlie T, Warnberg F, Haakensen VD, Helland A, Naume B, Perou CM, Haussler D, Troyanskaya OG, Borresen-Dale AL (2012) Integrated molecular profiles of invasive breast tumors and ductal carcinoma in situ (DCIS) reveal differential vascular and interleukin signaling. Proc Natl Acad Sci USA 109(8):2802–2807. doi:10.1073/pnas.1108781108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Chan P, Moller A, Liu MC, Sceneay JE, Wong CS, Waddell N, Huang KT, Dobrovic A, Millar EK, O’Toole SA, McNeil CM, Sutherland RL, Bowtell DD, Fox SB (2011) The expression of the ubiquitin ligase SIAH2 (seven in absentia homolog 2) is mediated through gene copy number in breast cancer and is associated with a basal-like phenotype and p53 expression. Breast cancer Res 13(1):R19. doi:10.1186/bcr2828

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 57(1):289–300. doi:10.2307/2346101

    Google Scholar 

  21. Carcangiu ML, Casalini P, Ménard S (2005) Breast tumors : an overview. http://atlasgeneticsoncology.org/Tumors/breastID5018.html. Accessed 31 Oct 2014

  22. Moelans CB, van Diest PJ (2013) Breast: ductal carcinoma. http://atlasgeneticsoncology.org/Tumors/DuctCarcBreastID5593.html. Accessed 31 Oct 2014

  23. Aubele MM, Cummings MC, Mattis AE, Zitzelsberger HF, Walch AK, Kremer M, Hofler H, Werner M (2000) Accumulation of chromosomal imbalances from intraductal proliferative lesions to adjacent in situ and invasive ductal breast cancer. Diagn Mol Pathol 9(1):14–19

    Article  CAS  PubMed  Google Scholar 

  24. Aubele M, Mattis A, Zitzelsberger H, Walch A, Kremer M, Welzl G, Hofler H, Werner M (2000) Extensive ductal carcinoma In situ with small foci of invasive ductal carcinoma: evidence of genetic resemblance by CGH. Int J Cancer 85(1):82–86

    Article  CAS  PubMed  Google Scholar 

  25. Ghofrani M, Tapia B, Tavassoli FA (2006) Discrepancies in the diagnosis of intraductal proliferative lesions of the breast and its management implications: results of a multinational survey. Virchows Arch 449(6):609–616. doi:10.1007/s00428-006-0245-y

    Article  PubMed Central  PubMed  Google Scholar 

  26. Kasami M, Jensen RA, Simpson JF, Page DL (2004) Lobulocentricity of breast hypersecretory hyperplasia with cytologic atypia: infrequent association with carcinoma in situ. Am J Clin Pathol 122(5):714–720. doi:10.1309/P90D-5BWT-RA65-P1LW

    Article  PubMed  Google Scholar 

  27. Ben-David U (2014) Genomic instability, driver genes and cell selection: projections from cancer to stem cells. Biochim Biophys Acta. doi:10.1016/j.bbagrm.2014.08.005

    PubMed  Google Scholar 

  28. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C, Edkins S, O’Meara S, Vastrik I, Schmidt EE, Avis T, Barthorpe S, Bhamra G, Buck G, Choudhury B, Clements J, Cole J, Dicks E, Forbes S, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Jenkinson A, Jones D, Menzies A, Mironenko T, Perry J, Raine K, Richardson D, Shepherd R, Small A, Tofts C, Varian J, Webb T, West S, Widaa S, Yates A, Cahill DP, Louis DN, Goldstraw P, Nicholson AG, Brasseur F, Looijenga L, Weber BL, Chiew YE, DeFazio A, Greaves MF, Green AR, Campbell P, Birney E, Easton DF, Chenevix-Trench G, Tan MH, Khoo SK, Teh BT, Yuen ST, Leung SY, Wooster R, Futreal PA, Stratton MR (2007) Patterns of somatic mutation in human cancer genomes. Nature 446(7132):153–158. doi:10.1038/nature05610

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Greenman C, Wooster R, Futreal PA, Stratton MR, Easton DF (2006) Statistical analysis of pathogenicity of somatic mutations in cancer. Genetics 173(4):2187–2198. doi:10.1534/genetics.105.044677

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Supek F, Miñana B, Valcárcel J, Gabaldón T, Lehner B (2014) Synonymous mutations frequently act as driver mutations in human cancers. Cell. doi:10.1016/j.cell.2014.01.051

    PubMed  Google Scholar 

  31. Muranen TA, Greco D, Fagerholm R, Kilpivaara O, Kampjarvi K, Aittomaki K, Blomqvist C, Heikkila P, Borg A, Nevanlinna H (2011) Breast tumors from CHEK2 1100delC-mutation carriers: genomic landscape and clinical implications. Breast Cancer Res 13(5):R90. doi:10.1186/bcr3015

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Sanz G, Leray I, Dewaele A, Sobilo J, Lerondel S, Bouet S, Grebert D, Monnerie R, Pajot-Augy E, Mir LM (2014) Promotion of cancer cell invasiveness and metastasis emergence caused by olfactory receptor stimulation. PLoS One 9(1):e85110. doi:10.1371/journal.pone.0085110

    Article  PubMed Central  PubMed  Google Scholar 

  33. Berx G, van Roy F (2009) Involvement of members of the cadherin superfamily in cancer. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a003129

    PubMed Central  PubMed  Google Scholar 

  34. Huret JL (2009) FGFR1 (Fibroblast Growth Factor Receptor 1). http://atlasgeneticsoncology.org/Tumors/breastID5018.html. Accessed 31 October 2014

  35. Elbauomy Elsheikh S, Green AR, Lambros MB, Turner NC, Grainge MJ, Powe D, Ellis IO, Reis-Filho JS (2007) FGFR1 amplification in breast carcinomas: a chromogenic in situ hybridisation analysis. Breast cancer Res 9(2):R23. doi:10.1186/bcr1665

    Article  PubMed Central  PubMed  Google Scholar 

  36. Berx G, Van Roy F (2001) The E-cadherin/catenin complex: an important gatekeeper in breast cancer tumorigenesis and malignant progression. Breast Cancer Res 3(5):289–293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Schlange T, Matsuda Y, Lienhard S, Huber A, Hynes NE (2007) Autocrine WNT signaling contributes to breast cancer cell proliferation via the canonical WNT pathway and EGFR transactivation. Breast Cancer Res 9(5):R63. doi:10.1186/bcr1769

    Article  PubMed Central  PubMed  Google Scholar 

  38. Lamb R, Ablett MP, Spence K, Landberg G, Sims AH, Clarke RB (2013) Wnt pathway activity in breast cancer sub-types and stem-like cells. PLoS One 8(7):e67811. doi:10.1371/journal.pone.0067811

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Wellings SR, Jensen HM (1973) On the origin and progression of ductal carcinoma in the human breast. J Natl Cancer Inst 50(5):1111–1118

    CAS  PubMed  Google Scholar 

  40. Johnson CE, Gorringe KL, Thompson ER, Opeskin K, Boyle SE, Wang Y, Hill P, Mann GB, Campbell IG (2012) Identification of copy number alterations associated with the progression of DCIS to invasive ductal carcinoma. Breast Cancer Res Treat 133(3):889–898. doi:10.1007/s10549-011-1835-1

    Article  CAS  PubMed  Google Scholar 

  41. Sontag L, Axelrod DE (2005) Evaluation of pathways for progression of heterogeneous breast tumors. J Theor Biol 232(2):179–189. doi:10.1016/j.jtbi.2004.08.002

    Article  PubMed  Google Scholar 

  42. Buerger H, Otterbach F, Simon R, Poremba C, Diallo R, Decker T, Riethdorf L, Brinkschmidt C, Dockhorn-Dworniczak B, Boecker W (1999) Comparative genomic hybridization of ductal carcinoma in situ of the breast-evidence of multiple genetic pathways. J Pathol 187(4):396–402. doi:10.1002/(SICI)1096-9896(199903)187:4<396:AID-PATH286>3.0.CO;2-L

    Article  CAS  PubMed  Google Scholar 

  43. Buerger H, Otterbach F, Simon R, Schafer KL, Poremba C, Diallo R, Brinkschmidt C, Dockhorn-Dworniczak B, Boecker W (1999) Different genetic pathways in the evolution of invasive breast cancer are associated with distinct morphological subtypes. J Pathol 189(4):521–526. doi:10.1002/(SICI)1096-9896(199912)189:4<521:AID-PATH472>3.0.CO;2-B

    Article  CAS  PubMed  Google Scholar 

  44. Burkhardt L, Grob TJ, Hermann I, Burandt E, Choschzick M, Janicke F, Muller V, Bokemeyer C, Simon R, Sauter G, Wilczak W, Lebeau A (2010) Gene amplification in ductal carcinoma in situ of the breast. Breast Cancer Res Treat 123(3):757–765. doi:10.1007/s10549-009-0675-8

    Article  CAS  PubMed  Google Scholar 

  45. O’Connell P, Pekkel V, Fuqua SA, Osborne CK, Clark GM, Allred DC (1998) Analysis of loss of heterozygosity in 399 premalignant breast lesions at 15 genetic loci. J Natl Cancer Inst 90(9):697–703

    Article  PubMed  Google Scholar 

  46. Page DL, Dupont WD, Rogers LW, Jensen RA, Schuyler PA (1995) Continued local recurrence of carcinoma 15–25 years after a diagnosis of low grade ductal carcinoma in situ of the breast treated only by biopsy. Cancer 76(7):1197–1200

    Article  CAS  PubMed  Google Scholar 

  47. Page DL, Dupont WD, Rogers LW, Landenberger M (1982) Intraductal carcinoma of the breast: follow-up after biopsy only. Cancer 49(4):751–758

    Article  CAS  PubMed  Google Scholar 

  48. Przybytkowski E, Lenkiewicz E, Barrett MT, Klein K, Nabavi S, Greenwood CM, Basik M (2014) Chromosome-breakage genomic instability and chromothripsis in breast cancer. BMC Genom 15:579. doi:10.1186/1471-2164-15-579

    Article  Google Scholar 

  49. Vincent-Salomon A, Lucchesi C, Gruel N, Raynal V, Pierron G, Goudefroye R, Reyal F, Radvanyi F, Salmon R, Thiery JP, Sastre-Garau X, Sigal-Zafrani B, Fourquet A, Delattre O, breast cancer study group of the Institut C (2008) Integrated genomic and transcriptomic analysis of ductal carcinoma in situ of the breast. Clinical Cancer Res 14 (7):1956–1965. 10.1158/1078-0432.CCR-07-1465.

  50. Ma XJ, Salunga R, Tuggle JT, Gaudet J, Enright E, McQuary P, Payette T, Pistone M, Stecker K, Zhang BM, Zhou YX, Varnholt H, Smith B, Gadd M, Chatfield E, Kessler J, Baer TM, Erlander MG, Sgroi DC (2003) Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci USA 100(10):5974–5979. doi:10.1073/pnas.0931261100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Iakovlev VV, Arneson NC, Wong V, Wang C, Leung S, Iakovleva G, Warren K, Pintilie M, Done SJ (2008) Genomic differences between pure ductal carcinoma in situ of the breast and that associated with invasive disease: a calibrated aCGH study. Clinical Cancer Res 14(14):4446–4454. doi:10.1158/1078-0432.CCR-07-4960

    Article  CAS  Google Scholar 

  52. Waldman FM, DeVries S, Chew KL, Moore DH 2nd, Kerlikowske K, Ljung BM (2000) Chromosomal alterations in ductal carcinomas in situ and their in situ recurrences. J Natl Cancer Inst 92(4):313–320

    Article  CAS  PubMed  Google Scholar 

  53. Verschuur-Maes AH, Moelans CB, de Bruin PC, van Diest PJ (2014) Analysis of gene copy number alterations by multiplex ligation-dependent probe amplification in columnar cell lesions of the breast. Cell Oncol 37(2):147–154. doi:10.1007/s13402-014-0170-z

    Article  CAS  Google Scholar 

  54. Hwang ES, DeVries S, Chew KL, Moore DH 2nd, Kerlikowske K, Thor A, Ljung BM, Waldman FM (2004) Patterns of chromosomal alterations in breast ductal carcinoma in situ. Clin Cancer Res 10(15):5160–5167. doi:10.1158/1078-0432.CCR-04-0165

    Article  CAS  PubMed  Google Scholar 

  55. James LA, Mitchell EL, Menasce L, Varley JM (1997) Comparative genomic hybridisation of ductal carcinoma in situ of the breast: identification of regions of DNA amplification and deletion in common with invasive breast carcinoma. Oncogene 14(9):1059–1065. doi:10.1038/sj.onc.1200923

    Article  CAS  PubMed  Google Scholar 

  56. Khoury T, Hu Q, Liu S, Wang J (2014) Intracystic papillary carcinoma of breast: interrelationship with in situ and invasive carcinoma and a proposal of pathogenesis: array comparative genomic hybridization study of 14 cases. Mod Pathol. doi:10.1038/modpathol.2013.136

    PubMed Central  PubMed  Google Scholar 

  57. Blancato J, Graves A, Rashidi B, Moroni M, Tchobe L, Ozdemirli M, Kallakury B, Makambi KH, Marian C, Mueller SC (2014) SYK allelic loss and the role of Syk-regulated genes in breast cancer survival. PLoS One 9(2):e87610. doi:10.1371/journal.pone.0087610

    Article  PubMed Central  PubMed  Google Scholar 

  58. Kuukasjarvi T, Tanner M, Pennanen S, Karhu R, Kallioniemi OP, Isola J (1997) Genetic changes in intraductal breast cancer detected by comparative genomic hybridization. Am J Pathol 150(4):1465–1471

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Moelans CB, de Weger RA, Monsuur HN, Maes AH, van Diest PJ (2010) Molecular differences between ductal carcinoma in situ and adjacent invasive breast carcinoma: a multiplex ligation-dependent probe amplification study. Anal Cell Pathol 33(3):165–173. doi:10.3233/ACP-CLO-2010-0546

    Article  CAS  Google Scholar 

  60. Aubele M, Cummings M, Walsch A, Zitzelsberger H, Nahrig J, Hofler H, Werner M (2000) Heterogeneous chromosomal aberrations in intraductal breast lesions adjacent to invasive carcinoma. Anal Cell Pathol 20(1):17–24

    Article  CAS  PubMed  Google Scholar 

  61. Hester SD, Reid L, Nowak N, Jones WD, Parker JS, Knudtson K, Ward W, Tiesman J, Denslow ND (2009) Comparison of comparative genomic hybridization technologies across microarray platforms. J Biomol Tech 20(2):135–151

    PubMed Central  PubMed  Google Scholar 

  62. Zhao X, Li C, Paez JG, Chin K, Janne PA, Chen TH, Girard L, Minna J, Christiani D, Leo C, Gray JW, Sellers WR, Meyerson M (2004) An integrated view of copy number and allelic alterations in the cancer genome using single nucleotide polymorphism arrays. Cancer Res 64(9):3060–3071

    Article  CAS  PubMed  Google Scholar 

  63. Werner M, Mattis A, Aubele M, Cummings M, Zitzelsberger H, Hutzler P, Hofler H (1999) 20q13.2 amplification in intraductal hyperplasia adjacent to in situ and invasive ductal carcinoma of the breast. Virchows Arch 435(5):469–472

    Article  CAS  PubMed  Google Scholar 

  64. Yu Q, Li Y, Mu K, Li Z, Meng Q, Wu X, Wang Y, Li L (2014) Amplification of Mdmx and overexpression of MDM2 contribute to mammary carcinogenesis by substituting for p53 mutations. Diagn Pathol 9:71. doi:10.1186/1746-1596-9-71

    Article  PubMed Central  PubMed  Google Scholar 

  65. Moore E, Magee H, Coyne J, Gorey T, Dervan PA (1999) Widespread chromosomal abnormalities in high-grade ductal carcinoma in situ of the breast. Comparative genomic hybridization study of pure high-grade DCIS. J Pathol 187(4):403–409. doi:10.1002/(SICI)1096-9896(199903)187:4<403:AID-PATH284>3.0.CO;2-J

    Article  CAS  PubMed  Google Scholar 

  66. Yao J, Weremowicz S, Feng B, Gentleman RC, Marks JR, Gelman R, Brennan C, Polyak K (2006) Combined cDNA array comparative genomic hybridization and serial analysis of gene expression analysis of breast tumor progression. Cancer Res 66(8):4065–4078. doi:10.1158/0008-5472.CAN-05-4083

    Article  CAS  PubMed  Google Scholar 

  67. Liao S, Desouki MM, Gaile DP, Shepherd L, Nowak NJ, Conroy J, Barry WT, Geradts J (2012) Differential copy number aberrations in novel candidate genes associated with progression from in situ to invasive ductal carcinoma of the breast. Genes Chromosom Cancer 51(12):1067–1078. doi:10.1002/gcc.21991

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Cingoz S, Altungoz O, Canda T, Saydam S, Aksakoglu G, Sakizli M (2003) DNA copy number changes detected by comparative genomic hybridization and their association with clinicopathologic parameters in breast tumors. Cancer Genet Cytogenet 145(2):108–114

    Article  CAS  PubMed  Google Scholar 

  69. Heselmeyer-Haddad K, Berroa Garcia LY, Bradley A, Ortiz-Melendez C, Lee WJ, Christensen R, Prindiville SA, Calzone KA, Soballe PW, Hu Y, Chowdhury SA, Schwartz R, Schaffer AA, Ried T (2012) Single-cell genetic analysis of ductal carcinoma in situ and invasive breast cancer reveals enormous tumor heterogeneity yet conserved genomic imbalances and gain of MYC during progression. Am J Pathol 181(5):1807–1822. doi:10.1016/j.ajpath.2012.07.012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Rizki A, Weaver VM, Lee SY, Rozenberg GI, Chin K, Myers CA, Bascom JL, Mott JD, Semeiks JR, Grate LR, Mian IS, Borowsky AD, Jensen RA, Idowu MO, Chen F, Chen DJ, Petersen OW, Gray JW, Bissell MJ (2008) A human breast cell model of preinvasive to invasive transition. Cancer Res 68(5):1378–1387. doi:10.1158/0008-5472.CAN-07-2225

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Glockner S, Lehmann U, Wilke N, Kleeberger W, Langer F, Kreipe H (2000) Detection of gene amplification in intraductal and infiltrating breast cancer by laser-assisted microdissection and quantitative real-time PCR. Pathobiology 68(4–5):173–179. doi:10.1159/000055920

  72. Fiche M, Avet-Loiseau H, Maugard CM, Sagan C, Heymann MF, Leblanc M, Classe JM, Fumoleau P, Dravet F, Mahe M, Dutrillaux B (2000) Gene amplifications detected by fluorescence in situ hybridization in pure intraductal breast carcinomas: relation to morphology, cell proliferation and expression of breast cancer-related genes. Int J Cancer 89(5):403–410

    Article  CAS  PubMed  Google Scholar 

  73. Vos CB, ter Haar NT, Rosenberg C, Peterse JL, Cleton-Jansen AM, Cornelisse CJ, van de Vijver MJ (1999) Genetic alterations on chromosome 16 and 17 are important features of ductal carcinoma in situ of the breast and are associated with histologic type. Br J Cancer 81(8):1410–1418. doi:10.1038/sj.bjc.6693372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

SUR was funded by Tata Memorial Centre, Mumbai, India; AG and HM were funded by the Breast Cancer Now funding at King’s College London and by the National Institute for Health Research Biomedical Research Centre based at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London. Frequency plots and circle plots were created using the engine at the Progenetix website (www.progenetix.org) [15, 16].

Author contributions

SP, AG and SUR conceived the study, SUR acquired the data, performed the data analysis and generated figures and HM participated in the data analysis and generated figures. All authors were involved in writing the paper and had final approval of the submitted and published version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapnil Ulhas Rane.

Ethics declarations

Conflict of interest

The authors have no personal or financial conflict of interests to declare.

Human animals and inform consent

This study involved analysis of published literature. The study did not involve any human or animal participants.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10549_2015_3509_MOESM1_ESM.rar

Panther analysis.rar: archive of excel files containing results of PANTHER overrepresentation tests performed on gene lists corresponding to ECS groups of 13, 12–11, 10−8, 7 to −7, −8 to −10, −11 to −12, −13 and regions significantly different between pure DCIS and synchronous DCIS with an ECS of ± 8 to ± 13 (RAR 14975 kb)

Table 1

Observed aberration Frequency of 851 cytobands spanning chromosomes 1–22 and chromosome X across ADH, ‘pure’ DCIS, DCIS with synchronous IDC and ‘pure’ IDC (XLSX 157 kb)

Table 2

Observed aberration frequencies of significantly different aberrations between pure DCIS and synchronous DCIS identified using an FDR-corrected Fisher test with a p value ≤0.05(XLSX 128 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rane, S.U., Mirza, H., Grigoriadis, A. et al. Selection and evolution in the genomic landscape of copy number alterations in ductal carcinoma in situ (DCIS) and its progression to invasive carcinoma of ductal/no special type: a meta-analysis. Breast Cancer Res Treat 153, 101–121 (2015). https://doi.org/10.1007/s10549-015-3509-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-015-3509-x

Keywords

Navigation