Skip to main content

Advertisement

Log in

Abrogating phosphorylation of eIF4B is required for EGFR and mTOR inhibitor synergy in triple-negative breast cancer

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Triple-negative breast cancer (TNBC) patients suffer from a highly malignant and aggressive disease. They have a high rate of relapse and often develop resistance to standard chemotherapy. Many TNBCs have elevated epidermal growth factor receptor (EGFR) but are resistant to EGFR inhibitors as monotherapy. In this study, we sought to find a combination therapy that could sensitize TNBC to EGFR inhibitors. Phospho-mass spectrometry was performed on the TNBC cell line, BT20, treated with 0.5 μM gefitinib. Immunoblotting measured protein levels and phosphorylation. Colony formation and growth assays analyzed the treatment on cell proliferation, while MTT assays determined the synergistic effect of inhibitor combination. A Dual-Luciferase reporter gene plasmid measured translation. All statistical analysis was done on CalucuSyn and GraphPad Prism using ANOVAs. Phospho-proteomics identified the mTOR pathway to be of interest in EGFR inhibitor resistance. In our studies, combining gefitinib and temsirolimus decreased cell growth and survival in a synergistic manner. Our data identified eIF4B, as a potentially key fragile point in EGFR and mTOR inhibitor synergy. Decreased eIF4B phosphorylation correlated with drops in growth, viability, clonogenic survival, and cap-dependent translation. Taken together, these data suggest EGFR and mTOR inhibitors abrogate growth, viability, and survival via disruption of eIF4B phosphorylation leading to decreased translation in TNBC cell lines. Further, including an mTOR inhibitor along with an EGFR inhibitor in TNBC with increased EGFR expression should be further explored. Additionally, translational regulation may play an important role in regulating EGFR and mTOR inhibitor synergy and warrant further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schneider BP, Winer EP, Foulkes WD, Garber J, Perou CM, Richardson A, Sledge GW, Carey LA (2008) Triple-negative breast cancer: risk factors to potential targets. Clin Cancer Res 14(24):8010–8018. doi:10.1158/1078-0432.CCR-08-1208

    Article  CAS  PubMed  Google Scholar 

  2. Santana-Davila RPE (2010) Treatment options for patients with triple-negative breast cancer. J Hematol Oncol 3:42

    Article  PubMed Central  PubMed  Google Scholar 

  3. Chacon RD, Costanzo MV (2010) Triple-negative breast cancer. Breast Cancer Res 12(Suppl 2):S3. doi:10.1186/bcr2574

    Article  PubMed Central  PubMed  Google Scholar 

  4. Liu T, Yacoub R, Taliaferro-Smith LD, Sun SY, Graham TR, Dolan R, Lobo C, Tighiouart M, Yang L, Adams A, O’Regan RM (2011) Combinatorial effects of lapatinib and rapamycin in triple-negative breast cancer cells. Mol Cancer Ther 10(8):1460–1469. doi:10.1158/1535-7163.MCT-10-0925

    Article  CAS  PubMed  Google Scholar 

  5. Wheeler DL, Dunn EF, Harari PM (2010) Understanding resistance to EGFR inhibitors-impact on future treatment strategies. Nat Rev Clin Oncol 7(9):493–507. doi:10.1038/nrclinonc.2010.97

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Carey LA, Rugo HS, Marcom PK, Mayer EL, Esteva FJ, Ma CX, Liu MC, Storniolo AM, Rimawi MF, Forero-Torres A, Wolff AC, Hobday TJ, Ivanova A, Chiu WK, Ferraro M, Burrows E, Bernard PS, Hoadley KA, Perou CM, Winer EP (2012) TBCRC 001: randomized phase II study of cetuximab in combination with carboplatin in stage IV triple-negative breast cancer. J Clin Oncol 30(21):2615–2623. doi:10.1200/JCO.2010.34.5579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. La Monica S, Galetti M, Alfieri RR, Cavazzoni A, Ardizzoni A, Tiseo M, Capelletti M, Goldoni M, Tagliaferri S, Mutti A, Fumarola C, Bonelli M, Generali D, Petronini PG (2009) Everolimus restores gefitinib sensitivity in resistant non-small cell lung cancer cell lines. Biochem Pharmacol 78(5):460–468. doi:10.1016/j.bcp.2009.04.033

    Article  PubMed  Google Scholar 

  8. Mueller KL, Powell K, Madden JM, Eblen ST, Boerner JL (2012) EGFR tyrosine 845 phosphorylation-dependent proliferation and transformation of breast cancer cells require activation of p38 MAPK. Transl oncol 5(5):327–334

    Article  PubMed Central  PubMed  Google Scholar 

  9. Brian Rini SK, Kirkpatrick Peter (2007) Temsirolimus. Nat Rev Drug Discovery 6:599–600

    Article  Google Scholar 

  10. Albert S, Serova M, Dreyer C, Sablin MP, Faivre S, Raymond E (2010) New inhibitors of the mammalian target of rapamycin signaling pathway for cancer. Expert Opin Investig Drugs 19(8):919–930. doi:10.1517/13543784.2010.499121

    Article  CAS  PubMed  Google Scholar 

  11. Chou TC (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58(3):621–681. doi:10.1124/pr.58.3.10

    Article  CAS  PubMed  Google Scholar 

  12. Silvera D, Formenti SC, Schneider RJ (2010) Translational control in cancer. Nat Rev Cancer 10(4):254–266. doi:10.1038/nrc2824

    Article  CAS  PubMed  Google Scholar 

  13. Loreni F, Mancino M, Biffo S (2013) Translation factors and ribosomal proteins control tumor onset and progression: how? Oncogene. doi:10.1038/onc.2013.153

    PubMed  Google Scholar 

  14. van Gorp AG, van der Vos KE, Brenkman AB, Bremer A, van den Broek N, Zwartkruis F, Hershey JW, Burgering BM, Calkhoven CF, Coffer PJ (2009) AGC kinases regulate phosphorylation and activation of eukaryotic translation initiation factor 4B. Oncogene 28(1):95–106. doi:10.1038/onc.2008.367

    Article  PubMed  Google Scholar 

  15. Raught B, Peiretti F, Gingras AC, Livingstone M, Shahbazian D, Mayeur GL, Polakiewicz RD, Sonenberg N, Hershey JW (2004) Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. EMBO J 23(8):1761–1769. doi:10.1038/sj.emboj.7600193

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Roux PP, Shahbazian D, Vu H, Holz MK, Cohen MS, Taunton J, Sonenberg N, Blenis J (2007) RAS/ERK signaling promotes site-specific ribosomal protein S6 phosphorylation via RSK and stimulates cap-dependent translation. J Biol Chem 282(19):14056–14064. doi:10.1074/jbc.M700906200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Gingras AC, Raught B, Sonenberg N (1999) eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 68:913–963. doi:10.1146/annurev.biochem.68.1.913

    Article  CAS  PubMed  Google Scholar 

  18. Shahbazian D, Parsyan A, Petroulakis E, Hershey J, Sonenberg N (2010) eIF4B controls survival and proliferation and is regulated by proto-oncogenic signaling pathways. Cell Cycle 9(20):4106–4109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Merrick WC (2004) Cap-dependent and cap-independent translation in eukaryotic systems. Gene 332:1–11. doi:10.1016/j.gene.2004.02.051

    Article  CAS  PubMed  Google Scholar 

  20. Shahbazian D, Roux PP, Mieulet V, Cohen MS, Raught B, Taunton J, Hershey JW, Blenis J, Pende M, Sonenberg N (2006) The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity. EMBO J 25(12):2781–2791. doi:10.1038/sj.emboj.7601166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Wendel HG, De Stanchina E, Fridman JS, Malina A, Ray S, Kogan S, Cordon-Cardo C, Pelletier J, Lowe SW (2004) Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428(6980):332–337. doi:10.1038/nature02369

    Article  CAS  PubMed  Google Scholar 

  22. Petersen CP, Bordeleau ME, Pelletier J, Sharp PA (2006) Short RNAs repress translation after initiation in mammalian cells. Mol Cell 21(4):533–542. doi:10.1016/j.molcel.2006.01.031

    Article  CAS  PubMed  Google Scholar 

  23. Hawk NROR (2010) Treatment of triple-negative breast cancer. Community Oncology 7:328–332

    Article  Google Scholar 

  24. Bianco R, Garofalo S, Rosa R, Damiano V, Gelardi T, Daniele G, Marciano R, Ciardiello F, Tortora G (2008) Inhibition of mTOR pathway by everolimus cooperates with EGFR inhibitors in human tumours sensitive and resistant to anti-EGFR drugs. Br J Cancer 98(5):923–930. doi:10.1038/sj.bjc.6604269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. O’Regan R, Hawk NN (2011) mTOR inhibition in breast cancer: unraveling the complex mechanisms of mTOR signal transduction and its clinical implications in therapy. Expert Opin Ther Targets 15(7):859–872. doi:10.1517/14728222.2011.575362

    Article  PubMed  Google Scholar 

  26. Lazaris-Karatzas A, Montine KS, Sonenberg N (1990) Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′ cap. Nature 345(6275):544–547. doi:10.1038/345544a0

    Article  CAS  PubMed  Google Scholar 

  27. Montanaro L, Trere D, Derenzini M (2012) Changes in ribosome biogenesis may induce cancer by down-regulating the cell tumor suppressor potential. Biochim Biophys Acta 1825(1):101–110. doi:10.1016/j.bbcan.2011.10.006

    CAS  PubMed  Google Scholar 

  28. Wolfe AL, Singh K, Zhong Y, Drewe P, Rajasekhar VK, Sanghvi VR, Mavrakis KJ, Jiang M, Roderick JE, Van der Meulen J, Schatz JH, Rodrigo CM, Zhao C, Rondou P, de Stanchina E, Teruya-Feldstein J, Kelliher MA, Speleman F, Porco JA, Pelletier J, Ratsch G, Wendel HG (2014) RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer. Nature. doi:10.1038/nature13485

    PubMed Central  Google Scholar 

  29. Boussemart L, Malka-Mahieu H, Girault I, Allard D, Hemmingsson O, Tomasic G, Thomas M, Basmadjian C, Ribeiro N, Thuaud F, Mateus C, Routier E, Kamsu-Kom N, Agoussi S, Eggermont AM, Desaubry L, Robert C, Vagner S (2014) eIF4F is a nexus of resistance to anti-BRAF and anti-MEK cancer therapies. Nature. doi:10.1038/nature13572

    PubMed  Google Scholar 

  30. Clark DE, Errington TM, Smith JA, Frierson HF Jr, Weber MJ, Lannigan DA (2005) The serine/threonine protein kinase, p90 ribosomal S6 kinase, is an important regulator of prostate cancer cell proliferation. Cancer Res 65(8):3108–3116. doi:10.1158/0008-5472.CAN-04-3151

    CAS  PubMed  Google Scholar 

  31. Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB (2005) Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 4(12):988–1004. doi:10.1038/nrd1902

    Article  CAS  PubMed  Google Scholar 

  32. Romeo Y, Roux PP (2011) Paving the way for targeting RSK in cancer. Expert Opin Ther Targets 15(1):5–9. doi:10.1517/14728222.2010.531014

    Article  CAS  PubMed  Google Scholar 

  33. Keller A, Nesvizhskii AI, Kolker E, Aebersold R (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74(20):5383–5392

    Article  CAS  PubMed  Google Scholar 

  34. Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75(17):4646–4658

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Daniela Buac for her assistance with the luciferase reporter assay. This work was supported by Susan G. Komen for the Cure Career Catalyst Grant (KG081416;JLB) and National Institutes of Health T32 Training Grant (CA009531;JMM). The Proteomics core is supported, in part, by NIH Center grant P30 CA022453 to the Karmanos Cancer Institute at Wayne State University.

Funding

This work was supported by Susan G. Komen for the Cure Career Catalyst Grant (KG081416; JLB), National Institutes of Health T32 Training Grant (CA009531; JMM) and National Institutes of Health Center grant P30 (CA022453; PS).

Ethical standards

All experiments comply with the current laws of the United States of America.

Conflict of interests

None of the authors declare conflicts of interest with this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie L. Boerner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madden, J.M., Mueller, K.L., Bollig-Fischer, A. et al. Abrogating phosphorylation of eIF4B is required for EGFR and mTOR inhibitor synergy in triple-negative breast cancer. Breast Cancer Res Treat 147, 283–293 (2014). https://doi.org/10.1007/s10549-014-3102-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-014-3102-8

Keywords

Navigation