Skip to main content

Advertisement

Log in

Ghrelin and des-acyl ghrelin inhibit aromatase expression and activity in human adipose stromal cells: suppression of cAMP as a possible mechanism

  • Brief Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Aromatase converts androgens into estrogens and its expression within adipose stromal cells (ASCs) is believed to be the major driver of estrogen-dependent cancers in older women. Ghrelin is a gut-hormone that is involved in the regulation of appetite and known to bind to and activate the cognate ghrelin receptor, GHSR1a. The unacylated form of ghrelin, des-acyl ghrelin, binds weakly to GHSR1a but has been shown to play an important role in regulating a number of physiological processes. The aim of this study was to determine the effect of ghrelin and des-acyl ghrelin on aromatase in primary human ASCs. Primary human ASCs were isolated from adipose tissue of women undergoing cosmetic surgery. Real-time PCR and tritiated water-release assays were performed to examine the effect of treatment on aromatase transcript expression and aromatase activity, respectively. Treatments included ghrelin, des-acyl ghrelin, obestatin, and capromorelin (GHSR1a agonist). GHSR1a protein expression was assessed by Western blot and effects of treatment on Ca2+ and cAMP second messenger systems were examined using the Flexstation assay and the Lance Ultra cAMP kit, respectively. Results demonstrate that pM concentrations of ghrelin and des-acyl ghrelin inhibit aromatase transcript expression and activity in ASCs under basal conditions and in PGE2-stimulated cells. Moreover, the effects of ghrelin and des-acyl ghrelin are mediated via effects on aromatase promoter PII-specific transcripts. Neither the GHSR1a-specific agonist capromorelin nor obestatin had any effect on aromatase transcript expression or activity. Moreover, GHSR1a protein was undetectable by Western blot and neither ghrelin nor capromorelin elicited a calcium response in ASCs. Finally, ghrelin caused a significant decrease in basal and forskolin-stimulated cAMP in ASC. These findings suggest that ghrelin acts at alternate receptors in ASCs by decreasing intracellular cAMP levels. Ghrelin mimetics may be useful in the treatment of estrogen-dependent breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Brown KA, Simpson ER (2012) Obesity and breast cancer: mechanisms and therapeutic implications. Front Biosci (Elite Ed) 4:2515–2524

    Article  Google Scholar 

  2. Simpson ER, Brown KA (2011) Obesity, aromatase and breast cancer. Expert Rev Endocrinol Metab 6(3):383–395

    Article  CAS  Google Scholar 

  3. Brown KA, McInnes KJ, Hunger NI, Oakhill JS, Steinberg GR, Simpson ER (2009) Subcellular localization of cyclic AMP-responsive element binding protein-regulated transcription coactivator 2 provides a link between obesity and breast cancer in postmenopausal women. Cancer Res 69(13):5392–5399

    Article  CAS  PubMed  Google Scholar 

  4. Brown KA, Samarajeewa NU, Simpson ER (2013) Endocrine-related cancers and the role of AMPK. Mol Cell Endocrinol 366(2):170–9. doi:10.1016/j.mce.2012.06.016

  5. Brown KA, Simpson ER (2010) Obesity and breast cancer: progress to understanding the relationship. Cancer Res 70(1):4–7

    Article  CAS  PubMed  Google Scholar 

  6. Bulun SE, Chen D, Lu M, Zhao H, Cheng Y, Demura M, Yilmaz B, Martin R, Utsunomiya H, Thung S, Su E, Marsh E, Hakim A, Yin P, Ishikawa H, Amin S, Imir G, Gurates B, Attar E, Reierstad S, Innes J, Lin Z (2007) Aromatase excess in cancers of breast, endometrium and ovary. J Steroid Biochem Mol Biol 106(1–5):81–96. doi:10.1016/j.jsbmb.2007.05.027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402:656–660

    Article  CAS  PubMed  Google Scholar 

  8. Pazos Y, Casanueva FF, Camiña JP (2008) Basic aspects of ghrelin action. Vitam Horm 77:89–119

    Article  CAS  PubMed  Google Scholar 

  9. Seim I, Walpole C, Amorim L, Josh P, Herington A, Chopin L (2011) The expanding roles of the ghrelin-gene derived peptide obestatin in health and disease. Mol Cell Endocrinol 340(1):111–117. doi:10.1016/j.mce.2011.03.018

    Article  CAS  PubMed  Google Scholar 

  10. Gutierrez JA, Solenberg PJ, Perkins DR, Willency JA, Knierman MD, Jin Z, Witcher DR, Luo S, Onyia JE, Hale JE (2008) Ghrelin octanoylation mediated by an orphan lipid transferase. Proc Natl Acad Sci USA 105:6320–6325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Howard AD, Feighner SD, Cully DF et al (1996) A receptor in pituitary and hypothalamus that functions in growth hormone release. Science 273:974–977

    Article  CAS  PubMed  Google Scholar 

  12. Kojima M, Kangawa K (2005) Ghrelin: structure and function. Physiol Rev 85:495–522

    Article  CAS  PubMed  Google Scholar 

  13. Muccioli G, Baragli A, Granata R, Papotti M, Ghigo E (2007) Heterogeneity of ghrelin/growth hormone secretagogue receptors. Neuroendocrinology 86:147–164

    Article  CAS  PubMed  Google Scholar 

  14. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402(6762):656–660

    Article  CAS  PubMed  Google Scholar 

  15. Matsumoto M, Hosoda H, Kitajima Y, Morozumi N, Minamitake Y, Tanaka S, Matsuo H, Kojima M, Hayashi Y, Kangawa K (2001) Structure-activity relationship of ghrelin: pharmacological study of ghrelin peptides. Biochemical and biophysical research communications 287(1):142–146. doi:10.1006/bbrc.2001.5553

    Article  CAS  PubMed  Google Scholar 

  16. Kojima M, Kangawa K (2005) Ghrelin: structure and function. Physiol Rev 85(2):495–522. doi:10.1152/physrev.00012.2004

    Article  CAS  PubMed  Google Scholar 

  17. Scerif M, Goldstone AP, Korbonits M (2011) Ghrelin in obesity and endocrine diseases. Mol Cell Endocrinol 340(1):15–25

    Article  CAS  PubMed  Google Scholar 

  18. Ackerman GE, Smith ME, Mendelson CR, MacDonald PC, Simpson ER (1981) Aromatization of androstenedione by human adipose tissue stromal cells in monolayer culture. J Clin Endocrinol Metab 53(2):412–417

    Article  CAS  PubMed  Google Scholar 

  19. Lephart ED, Simpson ER (1991) Assay of aromatase activity. Methods Enzymol 206:477–483

    Article  CAS  PubMed  Google Scholar 

  20. Callaghan B, Hunne B, Hirayama H, Sartor DM, Nguyen TV, Abogadie FC, Ferens D, McIntyre P, Ban K, Baell J, Furness JB, Brock JA (2012) Sites of action of ghrelin receptor ligands in cardiovascular control. Am J Physiol Heart Circ Physiol 303(8):1011–1021. doi:10.1152/ajpheart.00418.2012

    Article  Google Scholar 

  21. Zhao Y, Agarwal VR, Mendelson CR, Simpson ER (1996) Estrogen biosynthesis proximal to a breast tumor is stimulated by PGE2 via cyclic AMP, leading to activation of promoter II of the CYP19 (aromatase) gene. Endocrinology 137(12):5739–5742

    CAS  PubMed  Google Scholar 

  22. Subbaramaiah K, Morris PG, Zhou XK, Morrow M, Du B, Giri D, Kopelovich L, Hudis CA, Dannenberg AJ (2012) Increased levels of COX-2 and prostaglandin E2 contribute to elevated aromatase expression in inflamed breast tissue of obese women. Cancer Discov 2(4):356–365. doi:10.1158/2159-8290.CD-11-0241

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Callaghan B, Kosari S, Pustovit RV, Sartor DM, Ferens DP, Ban K, Baell J, Nguyen TV, Rivera LR, Brock JA, Furness JB (2013) Hypotensive effects of ghrelin receptor agonists mediated through a novel receptor. Br J Pharmacol 171:1275–1286

    Article  Google Scholar 

  24. Tschöp M, Weyer C, Tataranni PA, Devanarayan V, Ravussin E, Heiman ML (2001) Circulating ghrelin levels are decreased in human obesity. Diabetes 50:707–709

    Article  PubMed  Google Scholar 

  25. Shiiya T, Nakazato M, Mizuta M, Date Y, Mondal MS, Tanaka M, Nozoe S, Hosoda H, Kangawa K, Matsukura S (2002) Plasma ghrelin levels in lean and obese humans and the effect of glucose on ghrelin secretion. J Clin Endocrinol Metab 87(1):240–244. doi:10.1210/jcem.87.1.8129

    Article  CAS  PubMed  Google Scholar 

  26. Grönberg M, Fjällskog M-L, Jirström K, Janson ET (2012) Expression of ghrelin is correlated to a favorable outcome in invasive breast cancer. Acta Oncol 51(3):386–393. doi:10.3109/0284186X.2011.631576

  27. Rauh M, Groschl M, Rascher W (2007) Simultaneous quantification of ghrelin and desacyl-ghrelin by liquid chromatography-tandem mass spectrometry in plasma, serum, and cell supernatants. Clin Chem 53(5):902–910. doi:10.1373/clinchem.2006.078956

    Article  CAS  PubMed  Google Scholar 

  28. Laviano A, Molfino A, Rianda S, Rossi Fanelli F (2012) The growth hormone secretagogue receptor (Ghs-R). Curr Pharm Des 18(31):4749–4754

    Article  CAS  PubMed  Google Scholar 

  29. Porporato PE, Filigheddu N, Reano S, Ferrara M, Angelino E, Gnocchi VF, Prodam F, Ronchi G, Fagoonee S, Fornaro M, Chianale F, Baldanzi G, Surico N, Sinigaglia F, Perroteau I, Smith RG, Sun Y, Geuna S, Graziani A (2013) Acylated and unacylated ghrelin impair skeletal muscle atrophy in mice. J Clin Invest 123(2):611–622. doi:10.1172/JCI39920

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Reano S, Graziani A, Filigheddu N (2014) Acylated and unacylated ghrelin administration to blunt muscle wasting. Curr Opin Clin Nutr Metab Care 17(3):236–240. doi:10.1097/MCO.0000000000000049

    Article  CAS  PubMed  Google Scholar 

  31. Togliatto G, Trombetta A, Dentelli P, Cotogni P, Rosso A, Tschop MH, Granata R, Ghigo E, Brizzi MF (2013) Unacylated ghrelin promotes skeletal muscle regeneration following hindlimb ischemia via SOD-2-mediated miR-221/222 expression. J Am Heart Assoc 2(6):e000376. doi:10.1161/JAHA.113.000376

    Article  PubMed Central  PubMed  Google Scholar 

  32. Benso A, St-Pierre DH, Prodam F, Gramaglia E, Granata R, van der Lely AJ, Ghigo E, Broglio F (2012) Metabolic effects of overnight continuous infusion of unacylated ghrelin in humans. Eur J Endocrinol 166(5):911–916. doi:10.1530/EJE-11-0982

    Article  CAS  PubMed  Google Scholar 

  33. Granata R, Volante M, Settanni F, Gauna C, Ghe C, Annunziata M, Deidda B, Gesmundo I, Abribat T, van der Lely AJ, Muccioli G, Ghigo E, Papotti M (2010) Unacylated ghrelin and obestatin increase islet cell mass and prevent diabetes in streptozotocin-treated newborn rats. J Mol Endocrinol 45(1):9–17. doi:10.1677/JME-09-0141

    Article  CAS  PubMed  Google Scholar 

  34. Togliatto G, Trombetta A, Dentelli P, Baragli A, Rosso A, Granata R, Ghigo D, Pegoraro L, Ghigo E, Brizzi MF (2010) Unacylated ghrelin rescues endothelial progenitor cell function in individuals with type 2 diabetes. Diabetes 59(4):1016–1025. doi:10.2337/db09-0858

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Dezaki K, Damdindorj B, Sone H, Dyachok O, Tengholm A, Gylfe E, Kurashina T, Yoshida M, Kakei M, Yada T (2011) Ghrelin attenuates cAMP-PKA signaling to evoke insulinostatic cascade in islet beta-cells. Diabetes 60(9):2315–2324. doi:10.2337/db11-0368

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Park S, Jiang H, Zhang H, Smith RG (2012) Modification of ghrelin receptor signaling by somatostatin receptor-5 regulates insulin release. Proc Natl Acad Sci USA 109(46):19003–19008. doi:10.1073/pnas.1209590109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Samarajeewa NU, Docanto MM, Simpson ER, Brown KA (2013) CREB-regulated transcription co-activator family stimulates promoter II-driven aromatase expression in preadipocytes. Horm Cancer 4(4):233–241. doi:10.1007/s12672-013-0142-1

  38. Michael MD, Michael LF, Simpson ER (1997) A CRE-like sequence that binds CREB and contributes to cAMP-dependent regulation of the proximal promoter of the human aromatase P450 (CYP19) gene. Mol Cell Endocrinol 134(2):147–156

    Article  CAS  PubMed  Google Scholar 

  39. Sofi M, Young MJ, Papamakarios T, Simpson ER, Clyne CD (2003) Role of CRE-binding protein (CREB) in aromatase expression in breast adipose. Breast Cancer Res Treat 79(3):399–407

    Article  CAS  PubMed  Google Scholar 

  40. Subbaramaiah K, Howe LR, Bhardwaj P, Du B, Gravaghi C, Yantiss RK, Zhou XK, Blaho VA, Hla T, Yang P, Kopelovich L, Hudis CA, Dannenberg AJ (2011) Obesity is associated with inflammation and elevated aromatase expression in the mouse mammary gland. Cancer Prev Res (Phila) 4(3):329–346. doi:10.1158/1940-6207CAPR-10-0381

    Article  CAS  Google Scholar 

  41. Riemsma R, Forbes CA, Kessels A, Lykopoulos K, Amonkar MM, Rea DW, Kleijnen J (2010) Systematic review of aromatase inhibitors in the first-line treatment for hormone sensitive advanced or metastatic breast cancer. Breast Cancer Res Treat 123(1):9–24. doi:10.1007/s10549-010-0974-0

    Article  CAS  PubMed  Google Scholar 

  42. Schmid SM, Eichholzer M, Bovey F, Myrick ME, Schotzau A, Guth U (2012) Impact of body mass index on compliance and persistence to adjuvant breast cancer therapy. Breast 21(4):487–492. doi:10.1016/j.breast.2011.11.005

    Article  PubMed  Google Scholar 

  43. Suzuki T, Miki Y, Nakamura Y, Moriya T, Ito K, Ohuchi N, Sasano H (2005) Sex steroid-producing enzymes in human breast cancer. Endocr Relat Cancer 12(4):701–720. doi:10.1677/erc.1.00834

    Article  CAS  PubMed  Google Scholar 

  44. Cassoni P, Papotti M, Ghè C, Catapano F, Sapino A, Graziani A, Deghenghi R, Reissmann T, Ghigo E, Muccioli G (2001) Identification, characterization, and biological activity of specific receptors for natural (ghrelin) and synthetic growth hormone secretagogues and analogs in human breast carcinomas and cell lines. J Clin Endocrinol Metab 86:1738–1745

    CAS  PubMed  Google Scholar 

  45. Jeffery PL, Murray RE, Yeh AH, McNamara JF, Duncan RP, Francis GD, Herington AC, Chopin LK (2005) Expression and function of the ghrelin axis, including a novel preproghrelin isoform, in human breast cancer tissues and cell lines. Endocr Relat Cancer 12:839–850

    Article  CAS  PubMed  Google Scholar 

  46. Fung JN, Seim I, Wang D, Obermair A, Chopin LK, Chen C (2010) Expression and in vitro functions of the ghrelin axis in endometrial cancer. Horm Cancer 1(5):245–255. doi:10.1007/s12672-010-0047-1

    Article  CAS  PubMed  Google Scholar 

  47. Delhanty PJ, Huisman M, Baldeon-Rojas LY, van den Berge I, Grefhorst A, Abribat T, Leenen PJ, Themmen AP, van der Lely AJ (2013) Des-acyl ghrelin analogs prevent high-fat-diet-induced dysregulation of glucose homeostasis. FASEB J 27(4):1690–1700. doi:10.1096/fj.12-221143

    Article  CAS  PubMed  Google Scholar 

  48. Julien M, Kay RG, Delhanty PJ, Allas S, Granata R, Barton C, Constable S, Ghigo E, van der Lely AJ, Abribat T (2012) In vitro and in vivo stability and pharmacokinetic profile of unacylated ghrelin (UAG) analogues. Eur J Pharm Sci 47(4):625–635. doi:10.1016/j.ejps.2012.07.014

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by NHMRC (Australia) Project Grant # GNT1005735 and by a grant from the National Breast Cancer Foundation (NC-14-011) to KAB, and by the Victorian Government Operational Infrastructure Support Program. KAB is supported by an NHMRC (Australia) Career Development Award GNT1007714. We thank Mr Seungmin Ham for his technical support.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The experiments detailed in the present manuscript were performed in accordance with National Health and Medical Research Council of Australia (NHMR) guidelines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristy A. Brown.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Docanto, M.M., Yang, F., Callaghan, B. et al. Ghrelin and des-acyl ghrelin inhibit aromatase expression and activity in human adipose stromal cells: suppression of cAMP as a possible mechanism. Breast Cancer Res Treat 147, 193–201 (2014). https://doi.org/10.1007/s10549-014-3060-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-014-3060-1

Keywords

Navigation