Skip to main content

Advertisement

Log in

CG0006, a novel histone deacetylase inhibitor, induces breast cancer cell death via histone-acetylation and chaperone-disrupting pathways independent of ER status

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

We previously reported that CG0006, a novel hydroxamate-based pan-histone deacetylase inhibitor (HDACI), suppresses the growth of human cancer cells. Here, we tested the ability of CG0006 to inhibit breast cancer cell proliferation in relation to estrogen receptor (ER) status, and examined changes in the expression of cell-cycle regulatory proteins. CG0006 effects on the proliferation of multiple human cancer cell lines were tested using MTT and MTS assays. Changes in estrogen-signaling proteins and cell-cycle regulatory proteins were examined by western blotting and quantitative RT-PCR, and cell-cycle effects were tested using flow cytometry. CG0006 increased histone H3 and H4 acetylation, up-regulated p21 protein, and promoted cell-cycle arrest, inducing G2/M-phase accumulation in ER-positive MCF7 cells, and G1- and G2/M-phase accumulation in ER-negative MDA-MB-231 cells. In both cell types, CG0006 treatment (1 μM) reduced the levels of the estrogen-signaling proteins ERα and cyclin D1, and promoted massive degradation of cell-cycle regulatory proteins. CG0006 down-regulated the histone deacetylase HDAC6 at the protein level in association with a subsequent increase in Hsp90 and α-tubulin acetylation. HDAC6 depletion using small interfering RNA produced a protein-degradation phenotype similar to that of CG0006 treatment. These findings suggest that CG0006 inhibits breast cancer cell growth by two different pathways: a histone acetylation-dependent pathway, and a non-epigenetic pathway that disrupts chaperone function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Witt O, Deubzer HE, Milde T, Oehme I (2009) HDAC family: what are the cancer relevant targets? Cancer Lett 277:8–21

    Article  PubMed  CAS  Google Scholar 

  2. Ma X, Ezzeldin HH, Diasio RB (2009) Histone deacetylase inhibitors: current status and overview of recent clinical trials. Drugs 69:1911–1934

    Article  PubMed  CAS  Google Scholar 

  3. Balasubramanian S, Verner E, Buggy JJ (2009) Isoform-specific histone deacetylase inhibitors: the next step? Cancer Lett 280:211–221

    Article  PubMed  CAS  Google Scholar 

  4. Zhou Q, Agoston AT, Atadja P, Nelson WG, Davidson NE (2008) Inhibition of histone deacetylases promotes ubiquitin-dependent proteasomal degradation of DNA methyltransferase 1 in human breast cancer cells. Mol Cancer Res 6:873–883

    Article  PubMed  CAS  Google Scholar 

  5. Mann BS, Johnson JR, Cohen MH, Justice R, Pazdur R (2007) FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 12:1247–1252

    Article  PubMed  CAS  Google Scholar 

  6. Margueron R, Duong V, Castet A, Cavaillès V (2004) Histone deacetylase inhibition and estrogen signalling in human breast cancer cells. Biochem Pharmacol 68:1239–1246

    Article  PubMed  CAS  Google Scholar 

  7. Thomas S, Munster PN (2009) Histone deacetylase inhibitor induced modulation of anti-estrogen therapy. Cancer Lett 280:184–191

    Article  PubMed  CAS  Google Scholar 

  8. Park WC, Jordan VC (2002) Selective estrogen receptor modulators (SERMS) and their roles in breast cancer prevention. Trends Mol Med 8:82–88

    Article  PubMed  CAS  Google Scholar 

  9. Chang J, Powles TJ, Allred DC, Ashley SE, Makris A, Gregory RK, Osborne CK, Dowsett M (2000) Prediction of clinical outcome from primary tamoxifen by expression of biologic markers in breast cancer patients. Clin Cancer 6:616–621

    CAS  Google Scholar 

  10. Yang X, Phillips DL, Ferguson AT, Nelson WG, Herman JG, Davidson NE (2001) Synergistic activation of functional estrogen receptor (ER)-α by DNA methyltransferase and histone deacetylase inhibition in human ERα-negative breast cancer cells. Cancer Res 61:7025–7029

    PubMed  CAS  Google Scholar 

  11. Sharma D, Blum J, Yang X, Beaulieu N, Macleod AR, Davidson NE (2005) Release of methyl CpG binding proteins and histone deacetylase 1 from the estrogen receptor α (ER) promoter upon reactivation in ER-negative human breast cancer cells. Mol Endocrinol 19:1740–1751

    Article  PubMed  CAS  Google Scholar 

  12. Keen JC, Yan L, Mack KM, Pettit C, Smith D, Sharma D, Davidson NE (2003) A novel histone deacetylase inhibitor, scriptaid, enhances expression of functional estrogen receptor α (ER) in ER negative human breast cancer cells in combination with 5-aza 2′-deoxycytidine. Breast Cancer Res Treat 81:177–186

    Article  PubMed  CAS  Google Scholar 

  13. Fortunati N, Bertino S, Costantino L, De Bortoli M, Compagnone A, Bandino A, Catalano MG, Boccuzzi G (2010) Valproic acid restores ERα and antiestrogen sensitivity to ERα-negative breast cancer cells. Mol Cell Endocrinol 314:17–22

    Article  PubMed  CAS  Google Scholar 

  14. Reid G, Métivier R, Lin CY, Denger S, Ibberson D, Ivacevic T, Brand H, Benes V, Liu ET, Gannon F (2005) Multiple mechanisms induce transcriptional silencing of a subset of genes, including oestrogen receptor α, in response to deacetylase inhibition by valproic acid and trichostatin A. Oncogene 24:4894–4907

    Article  PubMed  CAS  Google Scholar 

  15. Fiskus W, Ren Y, Mohapatra A, Bali P, Mandawat A, Rao R, Herger B, Yang Y, Atadja P, Wu J, Bhalla K (2007) Hydroxamic acid analogue histone deacetylase inhibitors attenuate estrogen receptor α levels and transcriptional activity: a result of hyperacetylation and inhibition of chaperone function of heat shock protein 90. Clin Cancer Res 13:4882–4890

    Article  PubMed  CAS  Google Scholar 

  16. Munster PN, Troso-Sandoval T, Rosen N, Rifkind R, Marks PA, Richon VM (2001) The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces differentiation of human breast cancer cells. Cancer Res 61:8492–8497

    PubMed  CAS  Google Scholar 

  17. Margueron R, Licznar A, Lazennec G, Vignon F, Cavaillès V (2003) Oestrogen receptor α increases p21(WAF1/CIP1) gene expression and the antiproliferative activity of histone deacetylase inhibitors in human breast cancer cells. J Endocrinol 179:41–53

    Article  PubMed  CAS  Google Scholar 

  18. Sowa Y, Orita T, Hiranabe-Minamikawa S, Nakano K, Mizuno T, Nomura H, Sakai T (1999) Histone deacetylase inhibitor activates the p21/WAF1/Cip1 gene promoter through the Sp1 sites. Ann N Y Acad Sci 886:195–199

    Article  PubMed  CAS  Google Scholar 

  19. Lin YC, Lin JH, Chou CW, Chang YF, Yeh SH, Chen CC (2008) Statins increase p21 through inhibition of histone deacetylase activity and release of promoter-associated HDAC1/2. Cancer Res 68:2375–2383

    Article  PubMed  CAS  Google Scholar 

  20. Hwang JJ, Kim YS, Kim MJ, Jang S, Lee JH, Choi J, Ro S, Hyun YL, Lee JS, Kim CS (2009) A novel histone deacetylase inhibitor, CG0006, induces cell death through both extrinsic and intrinsic apoptotic pathways. Anticancer Drugs 20:815–821

    Article  PubMed  CAS  Google Scholar 

  21. Rae JM, Creighton CJ, Meck JM, Haddad BR, Johnson MD (2007) MDA-MB-435 cells are derived from M14 melanoma cells—a loss for breast cancer, but a boon for melanoma research. Breast Cancer Res Treat 104:13–19

    Article  PubMed  Google Scholar 

  22. Blagg BS, Kerr TD (2005) Hsp90 inhibitors: small molecules that transform the Hsp90 protein folding machinery into a catalyst for protein degradation. Med Res Rev 26:310–338

    Article  Google Scholar 

  23. Umekita Y, Ohi Y, Sagara Y, Yoshida H (2002) Overexpression of cyclinD1 predicts for poor prognosis in estrogen receptor-negative breast cancer patients. Int J Cancer 98:415–418

    Article  PubMed  CAS  Google Scholar 

  24. Roy PG, Pratt N, Purdie CA, Baker L, Ashfield A, Quinlan P, Thompson AM (2010) High CCND1 amplification identifies a group of poor prognosis women with estrogen receptor positive breast cancer. Int J Cancer 127:355–360

    PubMed  CAS  Google Scholar 

  25. Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, Yoshida M, Wang XF, Yao TP (2002) HDAC6 is a microtubule-associated deacetylase. Nature 417:455–458

    Article  PubMed  CAS  Google Scholar 

  26. Kovacs JJ, Murphy PJ, Gaillard S, Zhao X, Wu JT, Nicchitta CV, Yoshida M, Toft DO, Pratt WB, Yao TP (2005) HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell 18:601–607

    Article  PubMed  CAS  Google Scholar 

  27. Viale G, Regan MM, Maiorano E, Mastropasqua MG, Dell’Orto P, Rasmussen BB, Raffoul J, Neven P, Orosz Z, Braye S, Ohlschlegel C, Thürlimann B, Gelber RD, Castiglione-Gertsch M, Price KN, Goldhirsch A, Gusterson BA, Coates AS (2007) Prognostic and predictive value of centrally reviewed expression of estrogen and progesterone receptors in a randomized trial comparing letrozole and tamoxifen adjuvant therapy for postmenopausal early breast cancer: BIG 1–98. J Clin Oncol 25:3846–3852

    Article  PubMed  Google Scholar 

  28. Ali S, Coombes RC (2002) Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev Cancer 2:101–112

    Article  PubMed  Google Scholar 

  29. Huang L, Pardee AB (2000) Suberoylanilide hydroxamic acid as a potential therapeutic agent for human breast cancer treatment. Mol Med 6:849–866

    PubMed  CAS  Google Scholar 

  30. Fortunati N, Bertino S, Costantino L, Bosco O, Vercellinatto I, Catalano MG, Boccuzzi G (2008) Valproic acid is a selective antiproliferative agent in estrogen-sensitive breast cancer cells. Cancer Lett 259:156–164

    Article  PubMed  CAS  Google Scholar 

  31. Xia Q, Sung J, Chowdhury W, Chen CL, Höti N, Shabbeer S, Carducci M, Rodriguez R (2006) Chronic administration of valproic acid inhibits prostate cancer cell growth in vitro and in vivo. Cancer Res 66:7237–7244

    Article  PubMed  CAS  Google Scholar 

  32. Chiba T, Yokosuka O, Arai M, Tada M, Fukai K, Imazeki F, Kato M, Seki N, Saisho H (2004) Identification of genes up-regulated by histone deacetylase inhibition with cDNA microarray and exploration of epigenetic alterations on hepatoma cells. J Hepatol 41:436–445

    Article  PubMed  CAS  Google Scholar 

  33. Münster P, Marchion D, Bicaku E, Schmitt M, Lee JH, DeConti R, Simon G, Fishman M, Minton S, Garrett C, Chiappori A, Lush R, Sullivan D, Daud A (2007) Phase I trial of histone deacetylase inhibition by valproic acid followed by the topoisomerase II inhibitor epirubicin in advanced solid tumors: a clinical and translational study. J Clin Oncol 25:1979–1985

    Article  PubMed  Google Scholar 

  34. Jang ER, Lim SJ, Lee ES, Jeong G, Kim TY, Bang YJ, Lee JS (2004) The histone deacetylase inhibitor trichostatin A sensitizes estrogen receptor α-negative breast cancer cells to tamoxifen. Oncogene 23:1724–1736

    Article  PubMed  CAS  Google Scholar 

  35. Sharma D, Saxena NK, Davidson NE, Vertino PM (2006) Restoration of tamoxifen sensitivity in estrogen receptor-negative breast cancer cells: tamoxifen-bound reactivated ER recruits distinctive corepressor complexes. Cancer Res 66:6370–6378

    Article  PubMed  CAS  Google Scholar 

  36. Bali P, Pranpat M, Bradner J, Balasis M, Fiskus W, Guo F, Rocha K, Kumaraswamy S, Boyapalle S, Atadja P, Seto E, Bhalla K (2005) Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J Biol Chem 280:26729–26734

    Article  PubMed  CAS  Google Scholar 

  37. Watanabe T, Kato H, Kobayashi Y, Yamasaki S, Morita-Hoshi Y, Yokoyama H, Morishima Y, Ricker JL, Otsuki T, Miyagi-Maesima A, Matsuno Y, Tobinai K (2010) Potential efficacy of the oral histone deacetylase inhibitor vorinostat in a phase I trial in follicular and mantle cell lymphoma. Cancer Sci 101:196–200

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant (A062254) from the Korea Health 21 R&D Project, Ministry of Health, Welfare and Family Affairs, Republic of Korea. This research was also supported by the Mid-career Researcher Program through an NRF grant funded by the MEST (No. 2009-0081016), and a grant from the Asan Institute for Life Science (2006-309).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jene Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H.M., Kim, CS., Lee, JH. et al. CG0006, a novel histone deacetylase inhibitor, induces breast cancer cell death via histone-acetylation and chaperone-disrupting pathways independent of ER status. Breast Cancer Res Treat 130, 365–375 (2011). https://doi.org/10.1007/s10549-010-1310-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-1310-4

Keywords

Navigation