Skip to main content
Log in

Robust Identification of Rich-Club Organization in Weighted and Dense Structural Connectomes

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

The human brain is a complex network, in which some brain regions, denoted as ‘hub’ regions, play critically important roles. Some of these hubs are highly interconnected forming a rich-club organization, which has been identified based on the degree metric from structural connectomes constructed using diffusion tensor imaging (DTI)-based fiber tractography. However, given the limitations of DTI, the yielded structural connectomes are largely compromised, possibly affecting the characterization of rich-club organizations. Recent progress in diffusion MRI and fiber tractography now enable more reliable but also very dense structural connectomes to be achieved. However, while the existing rich-club analysis method is based on weighted networks, it is essentially built upon degree metric and, therefore, not suitable for identifying rich-club organizations from such dense networks, as it yields nodes with indistinguishably high degrees. Therefore, we propose a novel method, i.e. Rich-club organization Identification using Combined H-degree and Effective strength to h-degree Ratio (RICHER), to identify rich-club organizations from dense weighted networks. Overall, it is shown that more robust rich-club organizations can be achieved using our proposed framework (i.e., state-of-the-art fiber tractography approaches and our proposed RICHER method) in comparison to the previous method focusing on weighted networks based on degree, i.e., RC-degree. Furthermore, by simulating network attacks in 3 ways, i.e., attack to non-rich-club/non-rich-club edges (NRC2NRC), rich-club/non-rich-club edges (RC2NRC), and rich-club/rich-club edges (RC2RC), brain network damage consequences have been evaluated in terms of global efficiency (GE) reductions. As expected, significant GE reductions have been detected using our proposed framework among conditions, i.e., NRC2NRC < RC2NRC, NRC2NRC < RC2RC and RC2NRC < RC2RC, which however have not been detected otherwise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Although rich-club formation could alternatively be present as a disassortative network, i.e., hubs tend to be more likely to be connected to low-degree nodes (Colizza et al. 2006), this is unlikely the case in the human brain network which has been proposed to be an assortative network (van den Heuvel and Sporns 2011) and therefore will not be considered in this study.

References

  • Alstott J, Panzarasa P, Rubinov M, Bullmore ET, Vertes PE (2014) A unifying framework for measuring weighted rich clubs. Sci Rep 4:7258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersson JL, Skare S, Ashburner J (2003) How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage 20:870–888

    Article  PubMed  Google Scholar 

  • Barrat A, Barthelemy M, Pastor-Satorras R, Vespignani A (2004) The architecture of complex weighted networks. Proc Natl Acad Sci USA 101:3747–3752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basser PJ, Mattiello J, Lebihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 103:247–254

    Article  CAS  PubMed  Google Scholar 

  • Bassett DS, Bullmore ET (2016) Small-world brain networks revisited. Neuroscientist 23:499–516

    Article  PubMed  PubMed Central  Google Scholar 

  • Bastiani M, Shah NJ, Goebel R, Roebroeck A (2012) Human cortical connectome reconstruction from diffusion weighted MRI: the effect of tractography algorithm. Neuroimage 62:1732–1749

    Article  PubMed  Google Scholar 

  • Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198

    Article  CAS  PubMed  Google Scholar 

  • Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13:336–349

    Article  CAS  PubMed  Google Scholar 

  • Colizza V, Flammini A, Serrano MA, Vespignani A (2006) Detecting rich-club ordering in complex networks. Nat Phys 2:110–115

    Article  CAS  Google Scholar 

  • Crossley NA, Mechelli A, Vertes PE, Winton-Brown TT, Patel AX, Ginestet CE, Mcguire P, Bullmore ET (2013) Cognitive relevance of the community structure of the human brain functional coactivation network. Proc Natl Acad Sci USA 110:11583–11588

    Article  PubMed  PubMed Central  Google Scholar 

  • Daducci A, Dal Palu A, Lemkaddem A, Thiran JP (2015) COMMIT: Convex optimization modeling for microstructure informed tractography. IEEE Trans Med Imaging 34:246–257

    Article  PubMed  Google Scholar 

  • Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9:179–194

    Article  CAS  PubMed  Google Scholar 

  • Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31:968–980

    Article  PubMed  Google Scholar 

  • Drakesmith M, Caeyenberghs K, Dutt A, Lewis G, David AS, Jones DK (2015) Overcoming the effects of false positives and threshold bias in graph theoretical analyses of neuroimaging data. Neuroimage 118:313–333

    Article  CAS  PubMed  Google Scholar 

  • Girard G, Whittingstall K, Deriche R, Descoteaux M (2014) Towards quantitative connectivity analysis: reducing tractography biases. Neuroimage 98:266–278

    Article  PubMed  Google Scholar 

  • Goulas A, Bastiani M, Bezgin G, Uylings HB, Roebroeck A, Stiers P (2014) Comparative analysis of the macroscale structural connectivity in the macaque and human brain. PLoS Comput Biol 10:e1003529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6:e159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harriger L, Van Den Heuvel MP, Sporns O (2012) Rich club organization of macaque cerebral cortex and its role in network communication. PLoS ONE 7:e46497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsch JE (2005) An index to quantify an individual’s scientific research output. Proc Natl Acad Sci USA 102:16569–16572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutchison RM, Gallivan JP, Culham JC, Gati JS, Menon RS, Everling S (2012) Functional connectivity of the frontal eye fields in humans and macaque monkeys investigated with resting-state fMRI. J Neurophysiol 107:2463–2474

    Article  PubMed  Google Scholar 

  • Jones DK, Knosche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage 73:239–254

    Article  PubMed  Google Scholar 

  • Kennedy H, Knoblauch K, Toroczkai Z (2013) Why data coherence and quality is critical for understanding interareal cortical networks. Neuroimage 80:37–45

    Article  PubMed  Google Scholar 

  • Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87:198701

    Article  CAS  PubMed  Google Scholar 

  • Latora V, Marchiori M (2003) Economic small-world behavior in weighted networks. Eur Phys J B 32:249–263

    Article  CAS  Google Scholar 

  • Markov NT, Misery P, Falchier A, Lamy C, Vezoli J, Quilodran R, Gariel MA, Giroud P, Ercsey-Ravasz M, Pilaz LJ, Huissoud C, Barone P, Dehay C, Toroczkai Z, Essen V, Kennedy DC, Knoblauch K (2011) Weight consistency specifies regularities of macaque cortical networks. Cereb Cortex 21:1254–1272

    Article  CAS  PubMed  Google Scholar 

  • Markov NT, Ercsey-Ravasz M, Lamy C, Ribeiro Gomes AR, Magrou L, Misery P, Giroud P, Barone P, Dehay C, Toroczkai Z, Knoblauch K, Van Essen DC, Kennedy H (2013a) The role of long-range connections on the specificity of the macaque interareal cortical network. Proc Natl Acad Sci USA 110:5187–5192

    Article  PubMed  PubMed Central  Google Scholar 

  • Markov NT, Ercsey-Ravasz M, Van Essen DC, Knoblauch K, Toroczkai Z, Kennedy H (2013b) Cortical high-density counterstream architectures. Science 342:1238406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mccolgan P, Seunarine KK, Raz i A, Cole JH, Gregory S, Durr A, Roos RA, Stout JC, Landwehrmeyer B, Scahill RI, Clark CA, Rees G, Tabrizi SJ, Track HD I (2015) Selective vulnerability of Rich Club brain regions is an organizational principle of structural connectivity loss in Huntington’s disease. Brain 138:3327–3344

    Article  PubMed  PubMed Central  Google Scholar 

  • Mori S, Crain BJ, Chacko VP, Van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269

    Article  CAS  PubMed  Google Scholar 

  • Mugler JP, 3RD and Brookeman JR (1990) Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn Reson Med 15:152–157

    Article  PubMed  Google Scholar 

  • Newman MEJ (2004) Analysis of weighted networks. Phys Rev E 70:056131

    Article  CAS  Google Scholar 

  • Nigam S, Shimono M, Ito S, Yeh FC, Timme N, Myroshnychenko M, Lapish CC, Tosi Z, Hottowy P, Smith WC, Masmanidis SC, Litke AM, Sporns O, Beggs JM (2016) Rich-club organization in effective connectivity among cortical neurons. J Neurosci 36:670–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Opsahl T, Colizza V, Panzarasa P, Ramasco JJ (2008) Prominence and control: the weighted rich-club effect. Phys Rev Lett, 101:168702

    Article  CAS  PubMed  Google Scholar 

  • Patenaude B, Smith SM, Kennedy DN, Jenkinson M (2011) A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 56:907–922

    Article  PubMed  Google Scholar 

  • Pestilli F, Yeatman JD, Rokem A, Kay KN, Wandell BA (2014) Evaluation and statistical inference for human connectomes. Nat Methods 11:1058–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reese TG, Heid O, Weisskoff RM, Wedeen VJ (2003) Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magn Reson Med 49:177–182

    Article  CAS  PubMed  Google Scholar 

  • Roberts JA, Perry A, Lord AR, Roberts G, Mitchell PB, Smith RE, Calamante F, Breakspear M (2016) The contribution of geometry to the human connectome. Neuroimage 124:379–393

    Article  PubMed  Google Scholar 

  • Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52:1059–1069

    Article  PubMed  Google Scholar 

  • Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, De Stefano Zhang Y, Brady N, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23 Suppl 1, S208-19

    PubMed  Google Scholar 

  • Smith RE, Tournier JD, Calamante F, Connelly A (2012) Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information. Neuroimage 62:1924–1938

    Article  PubMed  Google Scholar 

  • Smith RE, Tournier JD, Calamante F, Connelly A (2013) SIFT: Spherical-deconvolution informed filtering of tractograms. Neuroimage 67:298–312

    Article  PubMed  Google Scholar 

  • Smith RE, Tournier JD, Calamante F, Connelly A (2015) The effects of SIFT on the reproducibility and biological accuracy of the structural connectome. Neuroimage 104:253–265

    Article  PubMed  Google Scholar 

  • Sporns O, Honey CJ, Kotter R (2007) Identification and classification of hubs in brain networks. PLoS ONE 2:e1049

    Article  PubMed  PubMed Central  Google Scholar 

  • Tournier JD, Calamante F, Connelly A (2007) Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35:1459–1472

    Article  PubMed  Google Scholar 

  • Tournier JD, Calamante F, Connelly A (2010) Improved probabilistic streamlines tractography by 2nd order integration over fibre orientation distributions. Proc ISMRM 18:1670

    Google Scholar 

  • Tournier JD, Mori S, Leemans A (2011) Diffusion tensor imaging and beyond. Magn Reson Med 65:1532–1556

    Article  PubMed  PubMed Central  Google Scholar 

  • Tournier JD, Calamante F, Connelly A (2012) MRtrix: Diffusion tractography in crossing fiber regions. Int J Imaging Syst Technol 22:53–66

    Article  Google Scholar 

  • Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29:1310–1320

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci 31:15775–15786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Den Heuvel MP, Sporns O, Collin G, Scheewe T, Mandl RC, Cahn W, Goni J, Pol H, Kahn RS (2013) Abnormal rich club organization and functional brain dynamics in schizophrenia. JAMA Psychiatry 70:783–792

    Article  PubMed  Google Scholar 

  • Wirsich J, Perry A, Ridley B, Proix T, Golos M, Benar C, Ranjeva J-P, Bartolomei F, Breakspear M, Jirsa V, Guye M (2016) Whole-brain analytic measures of network communication reveal increased structure-function correlation in right temporal lobe epilepsy. Neuroimage https://doi.org/10.1016/j.nicl.2016.05.010

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeh CH, Smith RE, Liang X, Calamante F, Connelly A (2016) Correction for diffusion MRI fibre tracking biases: The consequences for structural connectomic metrics. Neuroimage https://doi.org/10.1016/j.neuroimage.2016.05.047

    Article  PubMed  Google Scholar 

  • Zalesky A, Fornito A, Harding IH, Cocchi L, Yucel M, Pantelis C, Bullmore ET (2010) Whole-brain anatomical networks: does the choice of nodes matter? Neuroimage 50:970–983

    Article  PubMed  Google Scholar 

  • Zhao SX, Rousseau R, Ye FY (2011) h-Degree as a basic measure in weighted networks. J Inform 5:668–677

    Article  Google Scholar 

  • Zhou S, Mondragon RJ (2004) The rich-club phenomenon in the Internet topology. IEEE Commun Lett 8:180–182

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Robert Elton Smith (Florey Institute of Neuroscience and Mental Health) for very helpful discussions and advice. We are grateful to the National Health and Medical Research Council (NHMRC) of Australia, the Australian Research Council (ARC), and the Victorian Government’s Operational Infrastructure Support Program for their support. The authors also acknowledge the facilities, and the scientific and technical assistance of the National Imaging Facility at the Florey Node.

Funding

Funding was provided by National Health and Medical Research Council (Grant Nos. 1091593 and APP1117724).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyun Liang.

Additional information

Handling Editor: Fabrizio De Vico Fallani.

Appendix: Labelled Cortical and Subcortical Regions of Interest

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2370 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, X., Yeh, CH., Connelly, A. et al. Robust Identification of Rich-Club Organization in Weighted and Dense Structural Connectomes. Brain Topogr 32, 1–16 (2019). https://doi.org/10.1007/s10548-018-0661-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-018-0661-8

Keywords

Navigation