Skip to main content

Advertisement

Log in

Pulse Artifact Detection in Simultaneous EEG–fMRI Recording Based on EEG Map Topography

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

One of the major artifact corrupting electroencephalogram (EEG) acquired during functional magnetic resonance imaging (fMRI) is the pulse artifact (PA). It is mainly due to the motion of the head and attached electrodes and wires in the magnetic field occurring after each heartbeat. In this study we propose a novel method to improve PA detection by considering the strong gradient and inversed polarity between left and right EEG electrodes. We acquired high-density EEG–fMRI (256 electrodes) with simultaneous electrocardiogram (ECG) at 3 T. PA was estimated as the voltage difference between right and left signals from the electrodes showing the strongest artifact (facial and temporal). Peaks were detected on this estimated signal and compared to the peaks in the ECG recording. We analyzed data from eleven healthy subjects, two epileptic patients and four healthy subjects with an insulating layer between electrodes and scalp. The accuracy of the two methods was assessed with three criteria: (i) standard deviation, (ii) kurtosis and (iii) confinement into the physiological range of the inter-peak intervals. We also checked whether the new method has an influence on the identification of epileptic spikes. Results show that estimated PA improved artifact detection in 15/17 cases, when compared to the ECG method. Moreover, epileptic spike identification was not altered by the correction. The proposed method improves the detection of pulse-related artifacts, particularly crucial when the ECG is of poor quality or cannot be recorded. It will contribute to enhance the quality of the EEG increasing the reliability of EEG-informed fMRI analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen PJ, Polizzi G, Krakow K, Fish DR, Lemieux L (1998) Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction. Neuroimage 8:229–239. doi:10.1006/nimg.1998.0361

    Article  CAS  PubMed  Google Scholar 

  • Allen PJ, Josephs O, Turner R (2000) A method for removing imaging artifact from continuous EEG recorded during functional MRI. Neuroimage 12:230–239. doi:10.1006/nimg.2000.0599

    Article  CAS  PubMed  Google Scholar 

  • Benar C, Aghakhani Y, Wang Y, Izenberg A, Al-Asmi A, Dubeau F, Gotman J (2003) Quality of EEG in simultaneous EEG–fMRI for epilepsy. Clin Neurophysiol 114:569–580

    Article  PubMed  Google Scholar 

  • Brandeis D, Naylor H, Halliday R, Callaway E, Yano L (1992) Scopolamine effects on visual information processing, attention, and event-related potential map latencies. Psychophysiology 29:315–336

    Article  CAS  PubMed  Google Scholar 

  • Britz J, Van De Ville D, Michel CM (2010) BOLD correlates of EEG topography reveal rapid resting-state network dynamics. Neuroimage 52:1162–1170. doi:10.1016/j.neuroimage.2010.02.052

    Article  PubMed  Google Scholar 

  • Brodbeck V, Lascano AM, Spinelli L, Seeck M, Michel CM (2009) Accuracy of EEG source imaging of epileptic spikes in patients with large brain lesions. Clin Neurophysiol 120:679–685. doi:10.1016/j.clinph.2009.01.011

    Article  PubMed  Google Scholar 

  • Brookes MJ, Mullinger KJ, Stevenson CM, Morris PG, Bowtell R (2008) Simultaneous EEG source localisation and artifact rejection during concurrent fMRI by means of spatial filtering. Neuroimage 40:1090–1104. doi:10.1016/j.neuroimage.2007.12.030

    Article  PubMed  Google Scholar 

  • Brunet D, Murray MM, Michel CM (2011) Spatiotemporal analysis of multichannel EEG: CARTOOL. Comput Intell Neurosci 2011:813870. doi:10.1155/2011/813870

    Article  PubMed Central  PubMed  Google Scholar 

  • Chowdhury ME, Mullinger KJ, Glover P, Bowtell R (2014) Reference layer artefact subtraction (RLAS): a novel method of minimizing EEG artefacts during simultaneous fMRI. Neuroimage 84:307–319. doi:10.1016/j.neuroimage.2013.08.039

    Article  PubMed  Google Scholar 

  • Christov II (2004) Real time electrocardiogram QRS detection using combined adaptive threshold. Biomed Eng Online 3:28. doi:10.1186/1475-925X-3-28

    Article  PubMed Central  PubMed  Google Scholar 

  • Czisch M, Wehrle R, Kaufmann C, Wetter TC, Holsboer F, Pollmacher T, Auer DP (2004) Functional MRI during sleep: BOLD signal decreases and their electrophysiological correlates. Eur J Neurosci 20:566–574. doi:10.1111/j.1460-9568.2004.03518.x

    Article  PubMed  Google Scholar 

  • Debener S, Ullsperger M, Siegel M, Engel AK (2006) Single-trial EEG–fMRI reveals the dynamics of cognitive function. Trends Cogn Sci 10:558–563. doi:10.1016/j.tics.2006.09.010

    Article  PubMed  Google Scholar 

  • Debener S, Strobel A, Sorger B, Peters J, Kranczioch C, Engel AK, Goebel R (2007) Improved quality of auditory event-related potentials recorded simultaneously with 3-T fMRI: removal of the ballistocardiogram artefact. Neuroimage 34:587–597. doi:10.1016/j.neuroimage.2006.09.031

    Article  PubMed  Google Scholar 

  • Debener S, Mullinger KJ, Niazy RK, Bowtell RW (2008) Properties of the ballistocardiogram artefact as revealed by EEG recordings at 1.5, 3 and 7 T static magnetic field strength. Int J Psychophysiol 67:189–199. doi:10.1016/j.ijpsycho.2007.05.015

    Article  PubMed  Google Scholar 

  • Dempsey MF, Condon B (2001) Thermal injuries associated with MRI. Clin Radiol 56:457–465. doi:10.1053/crad.2000.0688

    Article  CAS  PubMed  Google Scholar 

  • Dempsey MF, Condon B, Hadley DM (2001) Investigation of the factors responsible for burns during MRI. J Magn Reson Imaging 13:627–631

    Article  CAS  PubMed  Google Scholar 

  • Felblinger J, Slotboom J, Kreis R, Jung B, Boesch C (1999) Restoration of electrophysiological signals distorted by inductive effects of magnetic field gradients during MR sequences. Magn Reson Med 41:715–721

    Article  CAS  PubMed  Google Scholar 

  • Grouiller F, Vercueil L, Krainik A, Segebarth C, Kahane P, David O (2007) A comparative study of different artefact removal algorithms for EEG signals acquired during functional MRI. Neuroimage 38:124–137. doi:10.1016/j.neuroimage.2007.07.025

    Article  PubMed  Google Scholar 

  • Grouiller F, Thornton RC, Groening K, Spinelli L, Duncan JS, Schaller K, Siniatchkin M, Lemieux L, Seeck M, Michel CM, Vulliemoz S (2011) With or without spikes: localization of focal epileptic activity by simultaneous electroencephalography and functional magnetic resonance imaging. Brain 134:2867–2886. doi:10.1093/brain/awr156

    Article  PubMed Central  PubMed  Google Scholar 

  • Koenig T, Melie-Garcia L (2010) A method to determine the presence of averaged event-related fields using randomization tests. Brain Topogr 23:233–242. doi:10.1007/s10548-010-0142-1

    Article  PubMed  Google Scholar 

  • Lehmann D, Skrandies W (1980) Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroencephalogr Clin Neurophysiol 48:609–621

    Article  CAS  PubMed  Google Scholar 

  • Lehmann D, Ozaki H, Pal I (1987) EEG alpha map series: brain micro-states by space-oriented adaptive segmentation. Electroencephalogr Clin Neurophysiol 67:271–288

    Article  CAS  PubMed  Google Scholar 

  • Lemieux L, Allen PJ, Franconi F, Symms MR, Fish DR (1997) Recording of EEG during fMRI experiments: patient safety. Magn Reson Med 38:943–952

    Article  CAS  PubMed  Google Scholar 

  • Mandelkow H, Halder P, Boesiger P, Brandeis D (2006) Synchronization facilitates removal of MRI artefacts from concurrent EEG recordings and increases usable bandwidth. Neuroimage 32:1120–1126. doi:10.1016/j.neuroimage.2006.04.231

    Article  CAS  PubMed  Google Scholar 

  • Marques JP, Rebola J, Figueiredo P, Pinto A, Sales F, Castelo-Branco M (2009) ICA decomposition of EEG signal for fMRI processing in epilepsy. Hum Brain Mapp 30:2986–2996. doi:10.1002/hbm.20723

    Article  PubMed  Google Scholar 

  • Mijovic B, Vanderperren K, Van Huffel S, De Vos M (2012) Improving spatiotemporal characterization of cognitive processes with data-driven EEG–fMRI analysis. Prilozi/Makedonska akademija na naukite i umetnostite, Oddelenie za bioloski i medicinski nauki = Contributions/Macedonian Academy of Sciences and Arts, Section of Biological and Medical Sciences 33:373–390

    CAS  Google Scholar 

  • Mullinger KJ, Havenhand J, Bowtell R (2013) Identifying the sources of the pulse artefact in EEG recordings made inside an MR scanner. Neuroimage 71:75–83. doi:10.1016/j.neuroimage.2012.12.070

    Article  PubMed Central  PubMed  Google Scholar 

  • Neuner I, Arrubla J, Werner CJ, Hitz K, Boers F, Kawohl W, Shah NJ (2014) The default mode network and EEG regional spectral power: a simultaneous fmri–EEG study. PLoS One 9:e88214. doi:10.1371/journal.pone.0088214

    Article  PubMed Central  PubMed  Google Scholar 

  • Niazy RK, Beckmann CF, Iannetti GD, Brady JM, Smith SM (2005) Removal of FMRI environment artifacts from EEG data using optimal basis sets. Neuroimage 28:720–737. doi:10.1016/j.neuroimage.2005.06.067

    Article  CAS  PubMed  Google Scholar 

  • Nierhaus T, Gundlach C, Goltz D, Thiel SD, Pleger B, Villringer A (2013) Internal ventilation system of MR scanners induces specific EEG artifact during simultaneous EEG–fMRI. Neuroimage 74:70–76. doi:10.1016/j.neuroimage.2013.02.016

    Article  PubMed  Google Scholar 

  • Pittau F, Grouiller F, Spinelli L, Seeck M, Michel CM, Vulliemoz S (2014) The role of functional neuroimaging in pre-surgical epilepsy evaluation. Front Neurol 5:31. doi:10.3389/fneur.2014.00031

    PubMed Central  PubMed  Google Scholar 

  • Shin JH, Choi BH, Lim YG, Jeong DU, Park KS (2008) Automatic ballistocardiogram (BCG) beat detection using a template matching approach. Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society*** Conference 2008:1144–1146. doi:10.1109/IEMBS.2008.4649363

    CAS  Google Scholar 

  • Skrandies W (2007) The effect of stimulation frequency and retinal stimulus location on visual evoked potential topography. Brain Topogr 20:15–20. doi:10.1007/s10548-007-0026-1

    Article  PubMed  Google Scholar 

  • Stern JM, Caporro M, Haneef Z, Yeh HJ, Buttinelli C, Lenartowicz A, Mumford JA, Parvizi J, Poldrack RA (2011) Functional imaging of sleep vertex sharp transients. Clin Neurophysiol 122:1382–1386. doi:10.1016/j.clinph.2010.12.049

    Article  PubMed Central  PubMed  Google Scholar 

  • Vanderperren K, De Vos M, Ramautar JR, Novitskiy N, Mennes M, Assecondi S, Vanrumste B, Stiers P, Van den Bergh BR, Wagemans J, Lagae L, Sunaert S, Van Huffel S (2010) Removal of BCG artifacts from EEG recordings inside the MR scanner: a comparison of methodological and validation-related aspects. Neuroimage 50:920–934. doi:10.1016/j.neuroimage.2010.01.010

    Article  PubMed  Google Scholar 

  • Vulliemoz S, Thornton R, Rodionov R, Carmichael DW, Guye M, Lhatoo S, McEvoy AW, Spinelli L, Michel CM, Duncan JS, Lemieux L (2009) The spatio-temporal mapping of epileptic networks: combination of EEG–fMRI and EEG source imaging. Neuroimage 46:834–843

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vulliemoz S, Lemieux L, Daunizeau J, Michel CM, Duncan JS (2010) The combination of EEG source imaging and EEG-correlated functional MRI to map epileptic networks. Epilepsia 51:491–505. doi:10.1111/j.1528-1167.2009.02342.x

    Article  PubMed  Google Scholar 

  • Weikl A, Moshage W, Hentschel D, Schittenhelm R, Bachmann K (1989) ECG changes caused by the effect of static magnetic fields of nuclear magnetic resonance tomography using magnets with a field power of 0.5 to 4.0 T. Z Kardiol 78:578–586

    CAS  PubMed  Google Scholar 

  • Yan WX, Mullinger KJ, Brookes MJ, Bowtell R (2009) Understanding gradient artefacts in simultaneous EEG/fMRI. Neuroimage 46:459–471

    Article  PubMed  Google Scholar 

  • Yan WX, Mullinger KJ, Geirsdottir GB, Bowtell R (2010) Physical modeling of pulse artefact sources in simultaneous EEG/fMRI. Hum Brain Mapp 31:604–620. doi:10.1002/hbm.20891

    PubMed  Google Scholar 

  • Zotev V, Phillips R, Yuan H, Misaki M, Bodurka J (2014) Self-regulation of human brain activity using simultaneous real-time fMRI and EEG neurofeedback. Neuroimage 85(Pt 3):985–995. doi:10.1016/j.neuroimage.2013.04.126

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Swiss National Science Foundation Grants 320030-141165 and 33CM30-140332 (SPUM Epilepsy) and by the Center for Biomedical Imaging (CIBM) of the Universities and Hospitals of Geneva and Lausanne, and the EPFL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Grouiller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iannotti, G.R., Pittau, F., Michel, C.M. et al. Pulse Artifact Detection in Simultaneous EEG–fMRI Recording Based on EEG Map Topography. Brain Topogr 28, 21–32 (2015). https://doi.org/10.1007/s10548-014-0409-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-014-0409-z

Keywords

Navigation