Skip to main content

Advertisement

Log in

Dispersive Fluxes Within and Over a Real Urban Canopy: A Large-Eddy Simulation Study

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Large-eddy simulations (LES) are conducted to study the transport of momentum and passive scalar within and over a real urban canopy in the City of Boston, USA. This urban canopy is characterized by complex building layouts, densities and orientations with high-rise buildings. Special attention is given to the magnitude, variability and structure of dispersive momentum and scalar fluxes and their relative importance to turbulent momentum and scalar fluxes. We first evaluate the LES model by comparing the simulated flow statistics over an urban-like canopy to data reported in previous studies. In simulations over the considered real urban canopy, we observe that the dispersive momentum and scalar fluxes can be important beyond 2–5 times the mean building height, which is a commonly used definition for the urban roughness sublayer height. Above the mean building height where the dispersive fluxes become weakly dependent on the grid spacing, the dispersive momentum flux contributes about 10–15% to the sum of turbulent and dispersive momentum fluxes and does not decrease monotonically with increasing height. The dispersive momentum and scalar fluxes are sensitive to the time and spatial averaging. We further find that the constituents of dispersive fluxes are spatially heterogeneous and enhanced by the presence of high-rise buildings. This work suggests the need to parameterize both turbulent and dispersive fluxes over real urban canopies in mesoscale and large-scale models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

The datasets generated and analysed during this study are available from the corresponding author on reasonable request.

References

  • Anderson W (2016) Amplitude modulation of streamwise velocity fluctuations in the roughness sublayer: evidence from large-eddy simulations. J Fluid Mech 789:567–588

    Article  Google Scholar 

  • Arakawa A, Lamb VR (1977) Computational Design of the Basic Dynamical Process of the UCLA General Circulation Model. Methods Comput Phys 17:173–265

  • Aristodemou E, Boganegra LM, Mottet L, Pavlidis D, Constantinou A, Pain C, Robins A, ApSimon H (2018) How tall buildings affect turbulent air flows and dispersion of pollution within a neighbourhood. Environ Pollut 233:782–796

    Article  Google Scholar 

  • Auvinen M, Boi S, Hellsten A, Tanhuanpää T, Järvi L (2020) Study of realistic urban boundary layer turbulence with high-resolution large-eddy simulation. Atmosphere 11:201

    Article  Google Scholar 

  • Avissar R, Chen F (1993) Development and analysis of prognostic equations for mesoscale kinetic energy and mesoscale (subgrid scale) fluxes for large-scale atmospheric models. J Atmos Sci 50(22):3751–3774

    Article  Google Scholar 

  • Bailey BN, Stoll R (2013) Turbulence in sparse, organized vegetative canopies: a large-eddy simulation study. Boundary-Layer Meteorol 147:369–400

    Article  Google Scholar 

  • Balakumar BJ, Adrian RJ (2007) Large- and very-large-scale motions in channel and boundary-layer flows. Philos Trans R Soc A 365:665–681

    Article  Google Scholar 

  • Barlow J, Best M, Bohnenstengel SI, Clark P, Grimmond S, Lean H, Christen A, Emeis S, Haeffelin M, Harman IN, Lemonsu A, Martilli A, Pardyjak E, Rotach MW, Ballard S, Boutle I, Brown A, Cai X, Carpentieri M, Coceal O, Crawford B, Di Sabatino S, Dou J, Drew DR, Edwards JM, Fallmann J, Fortuniak K, Gornall J, Gronemeier T, Halios CH, Hertwig D, Hirano K, Holtslag AAM, Luo Z, Mills G, Nakayoshi M, Pain K, Schlünzen KH, Smith S, Soulhac L, Steeneveld G, Sun T, Theeuwes NE, Thomson D, Voogt JA, Ward HC, Xie Z, Zhong J (2017) Developing a research strategy to better understand, observe, and simulate urban atmospheric processes at kilometer to subkilometer scales. Bull Amer Meteor 98(10):ES261–ES264

  • Basu S, Lacser A (2017) A cautionary note on the use of Monin-Obukhov similarity theory in very high-resolution large-eddy simulations. Boundary-Layer Meteorol 163:351–355

    Article  Google Scholar 

  • Belcher SE, Jerram N, Hunt JCR (2003) Adjustment of a turbulent boundary layer to a canopy of roughness elements. J Fluid Mech 488:369–398

    Article  Google Scholar 

  • Blackman K, Perret L (2016) Non-linear interactions in a boundary layer developing over an array of cubes using stochastic estimation. Phys Fluids 28(9):095–108

    Article  Google Scholar 

  • Blackman K, Perret L, Calmet I, Rivet C (2017) Turbulent kinetic energy budget in the boundary layer developing over an urban-like rough wall using PIV. Phys Fluids 29:085113

    Article  Google Scholar 

  • Blunn LP, Coceal O, Nazarian N, Barlow JF, Plant RS, Bohnenstengel SI, Lean HW (2022) Turbulence characteristics across a range of idealized urban canopy geometries. Boundary-Layer Meteorol 182:275–307

    Article  Google Scholar 

  • Bohm M, Finnigan JJ, Raupach MR (2000) Dispersive fluxes and canopy flows: just how important are they? American Meteorology Society, 24th conference on agricultural and forest meteorology, University of California, Davis, CA, pp 106–107

  • Böhm M, Finnigan JJ, Raupach MR, Hughes D (2013) Turbulence structure within and above a canopy of bluff elements. Boundary-Layer Meteorol 146:393–419

    Article  Google Scholar 

  • Bou-Zeid E, Overney J, Rogers BD, Parlange MB (2009) The effects of building representation and clustering in large-eddy simulations of flows in urban canopies. Boundary-Layer Meteorol 132:415–436

    Article  Google Scholar 

  • Britter RE, Hanna SR (2003) Flow and dispersion in urban areas. Annu Rev Fluid Mech 35(1):469–496

    Article  Google Scholar 

  • Britter RE, Hunt JCR (1979) Velocity measurements and order of magnitude estimates of the flow between two buildings in a simulated atmospheric boundary layer. J Indust Aerodyn 4:165–182

    Article  Google Scholar 

  • Calaf M, Morrison T, Margairaz F, Perelet A, Higgins CW, Drake SA, Pardyjak ER (2020) Surface thermal heterogeneities, dispersive fluxes and the conundrum of unaccounted statistical spatial inhomogeneities, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13388

  • Castro IP, Cheng H, Reynolds R (2006) Turbulence over urban-type roughness: deductions from wind tunnel measurements. Boundary-Layer Meteorol 118:109–131

    Article  Google Scholar 

  • Chen F, Avissar R (1994) The impact of land-surface wetness heterogeneity on mesoscale heat fluxes. J App Meteorol Climatol 33(11):1323–1340

    Article  Google Scholar 

  • Cheng H, Castro IP (2002) Near wall flow over urban-like roughness. Boundary-Layer Meteorol 104:229–259

    Article  Google Scholar 

  • Cheng H, Hayden P, Robins AG, Castro IP (2007) Flow over cube arrays of different packing densities. J Wind Engin Ind Aerodyn 95(8):715–740

    Article  Google Scholar 

  • Cheng WC, Liu CH, Ho YK, Mo Z, Wu Z, Li W, Chan LYL, Kwan WK, Yau HT (2021) Turbulent flows over real heterogeneous urban surfaces: wind tunnel experiments and Reynolds-averaged Navier–Stokes simulations. Build Simul 14:1345–1358

    Article  Google Scholar 

  • Chow FK, Moin P (2003) A further study of numerical errors in large eddy simulations. J Comput Phys 184(2):366–380

    Article  Google Scholar 

  • Christen A, van Gorsel E, Vogt R (2007) Coherent structures in urban roughness sublayer turbulence. Int J Climatol 27(14):1955–1968

    Article  Google Scholar 

  • Christen A, Rotach MW, Vogt R (2009) The budget of turbulent kinetic energy in the urban roughness sublayer. Boundary-Layer Meteorol 131(2):193–222

    Article  Google Scholar 

  • Christen A, Vogt R (2004) Direct measurement of dispersive fluxes within a Cork Oak plantation. 26th AMS conference on agricultural and forest meteorology, American Meteorological Society, Vancouver, BC, pp 86

  • Chung D, McKeon BJ (2010) Large-eddy simulation of large-scale structures in long channel flow. J Fluid Mech 661:341–364

    Article  Google Scholar 

  • Coceal O, Thomas TG, Castro IP, Belcher SE (2006) Mean flow and turbulence statistics over groups of urban-like cubical obstacles. Boundary-Layer Meteorol 121:491–519

    Article  Google Scholar 

  • Coceal O, Dobre A, Thomas T, Belcher S (2007a) Structure of turbulent flow over regular arrays of cubical roughness. J Fluid Mech 589:375–409

    Article  Google Scholar 

  • Coceal O, Thomas TG, Belcher SE (2007b) Spatial variability of flow statistics within regular building arrays. Boundary-Layer Meteorol 125:537–552

    Article  Google Scholar 

  • Deardorff JW (1980) Stratocumuluscapped mixed layers derived from a three-dimensional model. Boun Layer Meteorol 18:495–527

  • Efthimiou GC, Andronopoulos S, Bartzis JG, Berbekar E, Harms F, Leitl B (2017) CFD-RANS prediction of individual exposure from continuous release of hazardous airborne materials in complex urban environments. J Turbul 18(2):115–137

    Article  Google Scholar 

  • Eliasson I, Offerle B, Grimmond CSB, Lindqvist S (2006) Wind fields and turbulence statistics in an urban street canyon. Atmos Environ 40(1):1–16

    Article  Google Scholar 

  • Fang J, Porté-Agel F (2015) Large-eddy simulation of very-large-scale motions in the neutrally stratified atmospheric boundary layer. Boundary-Layer Meteorol 155:397–416

    Article  Google Scholar 

  • Fernando HJS, Lee SM, Anderson J, Princevac M, Pardyjak E, Grossman-Clarke S (2001) Urban fluid mechanics: air circulation and contaminant dispersion in cities. Environ Fluid Mech 1:107

    Article  Google Scholar 

  • Fernando HJS, Zajic D, Di Sabatino S, Dimitrova R, Hedquist B, Dallman A (2010) Flow, turbulence, and pollutant dispersion in urban atmospheres. Phys Fluids 22:051301

    Article  Google Scholar 

  • Finnigan J (2000) Turbulence in plant canopies. Ann Rev Fluid Mech 32(1):519–571

    Article  Google Scholar 

  • Fishpool GM, Lardeau S, Leschziner MA (2009) Persistent non-homogeneous features in periodic channel-flow simulations. Flow Turbul Combust 83:323–342

    Article  Google Scholar 

  • Flaherty JE, Stock D, Lamb B (2007) Computational fluid dynamic simulations of plume dispersion in urban Oklahoma City. J Appl Meteorol and Climatol 46:2110–2126

    Article  Google Scholar 

  • Fröhlich D, Matzarakis A (2020) Calculating human thermal comfort and thermal stress in the PALM model system 6.0. Geosci Model Dev 13:3055–3065

    Article  Google Scholar 

  • Giometto MG, Christen A, Meneveau C, Fang J, Krafczyk M, Parlange MB (2016) Spatial characteristics of roughness sublayer mean flow and turbulence over a realistic urban surface. Boundary-Layer Meteorol 160(3):425–452

    Article  Google Scholar 

  • Giometto MG, Christen A, Egli PE, Schmid MF, Tooke RT, Coops NC, Parlange MB (2017) Effects of trees on mean wind, turbulence, and momentum exchange within and above a real urban environment. Adv Water 106:154–168

    Article  Google Scholar 

  • Grimmond CSB, Oke TR (1999) Aerodynamic properties of urban areas derived from analysis of surface form. J Appl Meteorol 38(9):1262–1292

    Article  Google Scholar 

  • Gronemeier T, Suhring M (2019) On the effects of lateral openings on courtyard ventilation and pollution. A large-eddy simulation study. Atmosphere 10(2):63

    Article  Google Scholar 

  • Gronemeier T, Raasch S, Ng E (2017) Effects of unstable stratification on ventilation in Hong Kong. Atmosphere 8(9):168

    Article  Google Scholar 

  • Gronemeier T, Surm K, Harms F, Leitl B, Maronga B, Raasch S (2021) Evaluation of the dynamic core of the PALM model system 6.0 in a neutrally stratified urban environment: comparison between LES and wind-tunnel experiments. Geosci Model Dev 14:3317–3333

    Article  Google Scholar 

  • Hackbusch W (1985) Multigrid methods and applications. Springer, Berlin, p 378

    Book  Google Scholar 

  • Hellsten A, Ketelsen K, Sühring M, Auvinen M, Maronga B, Knigge C, Barmpas F, Tsegas G, Moussiopoulos N, Raasch S (2021) A nested multi-scale system implemented in the large-eddy simulation model PALM model system 6.0. Geosci Model Dev 14:3185–3214

    Article  Google Scholar 

  • Herpin S, Perret L, Mathis R, Tanguy C, Lasserre JJ (2018) Investigation of the flow inside an urban canopy immersed into an atmospheric boundary layer using laser Doppler anemometry. Exp Fluids 59:80

    Article  Google Scholar 

  • Hertwig D, Gough HL, Grimmond S, Barlow JF, Kent CW, Lin WE, Robins AG, Hayden P (2019) Wake characteristics of tall buildings in a realistic urban canopy. Boundary-Layer Meteorol 172:239–270

    Article  Google Scholar 

  • Hutchins N, Marusic I (2007) Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J Fluid Mech 579:1–28

    Article  Google Scholar 

  • Hutchins N, Chauhan K, Marusic I, Monty J, Klewicki J (2012) Towards reconciling the large-scale structure of turbulent boundary layers in the atmosphere and laboratory. Boundary-Layer Meteorol 145:273–306

    Article  Google Scholar 

  • Inagaki A, Castillo MCL, Yamashita Y, Kanda M, Takimoto H (2012) Large-eddy simulation of coherent flow structures within a cubical canopy. Boundary-Layer Meteorol 142:207–222

    Article  Google Scholar 

  • Inagaki A, Kanda M, Ahmad NH, Yagi A, Onodera N, Aoki T (2017) A numerical study of turbulence statistics and the structure of a spatially developing boundary layer over a realistic urban geometry. Boundary-Layer Meteorol 164:161–181

    Article  Google Scholar 

  • Jimenez J (2004) Turbulent flows over rough walls. Annu Rev Fluid Mech 36(1):173–196

    Article  Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, Oxford, p 289

    Book  Google Scholar 

  • Kanda M (2006) Large-eddy simulations on the effects of surface geometry of building arrays on turbulent organized structures. Boundary-Layer Meteorol 118:151–168

    Article  Google Scholar 

  • Kanda M, Inagaki A, Miyamoto T, Gryschka M, Raasch S (2013) A new aerodynamic parametrization for real urban surfaces. Boundary-Layer Meteorol 148:357–377

    Article  Google Scholar 

  • Karttunen S, Kurppa M, Auvinen M, Hellsten A, Järvi L (2020) Large-eddy simulation of the optimal street-tree layout for pedestrian-level aerosol particle concentrations—a case study from a city-boulevard. Atmos Environ X 6:100073

    Google Scholar 

  • Kataoka H, Mizuno M (2002) Numerical flow computation around aerolastic 3D square cylinder using inflow turbulence. Wind Struct 5:379–392

    Article  Google Scholar 

  • Katul G, Kuhn G, Schieldge J, Hsieh C-I (1997) The ejection-sweep character of scalar fluxes in the unstable surface layer. Boundary-Layer Meteorol 83:1–26

    Article  Google Scholar 

  • Kurppa M, Roldin P, Strömberg J, Balling A, Karttunen S, Kuuluvainen H, Niemi JV, Pirjola L, Rönkkö T, Timonen H, Hellsten A, Järvi L (2020) Sensitivity of spatial aerosol particle distributions to the boundary conditions in the PALM model system 6.0. Geosci Model Dev 13:5663–5685

    Article  Google Scholar 

  • Leonardi S, Orlandi P, Djenidi L, Antonia RA (2015) Heat transfer in a turbulent channel flow with square bars or circular rods on one wall. J Fluid Mech 776:512–530

    Article  Google Scholar 

  • Letzel MO, Krane M, Raasch S (2008) High resolution urban large-eddy simulation studies from street canyon to neighbourhood scale. Atmos Environ 42:8770–8784

    Article  Google Scholar 

  • Li D, Bou-Zeid E (2011) Coherent structures and the dissimilarity of turbulent transport of momentum and scalars in the unstable atmospheric surface layer. Boundary-Layer Meteorol 140(2):243–262

    Article  Google Scholar 

  • Li Q, Bou-Zeid E (2019) Contrasts between momentum and scalar transport over very rough surfaces. J Fluid Mech 880:32–58

    Article  Google Scholar 

  • Lund TS, Wu X, Squires KD (1998) Generation of turbulent inflow data for spatially developing boundary layer simulations. J Comput Phys 140:233–258

    Article  Google Scholar 

  • Mahrt L (1987) Grid-averaged surface fluxes. Mon Weather Rev 115(8):1550–1560

    Article  Google Scholar 

  • Mahrt L (2010) Computing turbulent fluxes near the surface: needed improvements. Agric for Meteorol 150(4):501–509

    Article  Google Scholar 

  • Makedonas A, Carpentieri M, Placidi M (2021) Urban boundary layers over dense and tall canopies. Boundary-Layer Meteorol 181:73–93

    Article  Google Scholar 

  • Maronga B, Raasch S (2013) Large-eddy simulations of surface heterogeneity effects on the convective boundary layer during the LITFASS-2003 experiment. Boundary-Layer Meteorol 146:17–44

    Article  Google Scholar 

  • Maronga B, Gryschka M, Heinze R, Hoffmann F, Kanani-Sühring F, Keck M, Ketelsen K, Letzel MO, Sühring M, Raasch S (2015) The Parallelized Large-Eddy Simulation Model (PALM) version 4.0 for atmospheric and oceanic flows: model formulation, recent developments, and future perspectives. Geosci Model Dev 8:1539–1637

    Article  Google Scholar 

  • Maronga B, Banzhaf S, Burmeister C, Esch T, Forkel R, Fröhlich D, Fuka V, Gehrke KF, Geletič J, Giersch S, Gronemeier T, Groß G, Heldens W, Hellsten A, Hoffmann F, Inagaki A, Kadasch E, Kanani-Sühring F, Ketelsen K, Khan BA, Knigge C, Knoop H, Krč P, Kurppa M, Maamari H, Matzarakis A, Mauder M, Pallasch M, Pavlik D, Pfafferott J, Resler J, Rissmann S, Russo E, Salim M, Schrempf M, Schwenkel J, Seckmeyer G, Schubert S, Sühring M, von Tils R, Vollmer L, Ward S, Witha B, Wurps H, Zeidler J, Raasch S (2020) Overview of the PALM model system 6.0. Geosci Model Dev 13:1335–1372

    Article  Google Scholar 

  • Mason P (1995) Atmospheric boundary layer flows: Their structure and measurement. Boundary-Layer Meteorol 72:213–214

    Article  Google Scholar 

  • Mathis R, Hutchins N, Marusic I (2009) Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J Fluid Mech 628:311–337

    Article  Google Scholar 

  • Meyers J, Geurts BJ, Sagaut P (2007) A computational error assessment of central finite-volume discretizations in large-eddy simulation using a Smagorinsky model. J Comput Phys 227(1):156–173

    Article  Google Scholar 

  • Mignot E, Barthelemy E, Hurther D (2009) Double-averaging analysis and local flow characterization of near-bed turbulence in gravel-bed channel flows. J Fluid Mech 618:279–303

    Article  Google Scholar 

  • Mo ZW, Liu CH, Ho YK (2021) Roughness sublayer flows over real urban morphology: a wind-tunnel study. Build Environ 188:107463

    Article  Google Scholar 

  • Moltchanov S, Bohbot-Raviv Y, Duman T, Shavit U (2015) Canopy edge flow: a momentum balance analysis. Water Resour Res 51(4):2081–2095

    Article  Google Scholar 

  • Monin AS, Obukhov AM (1954) Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr Akad Nauk SSSR Geophiz Inst 24(151):163–187

    Google Scholar 

  • Munters W, Meneveau C, Meyers J (2016) Shifted periodic boundary conditions for simulations of wall- bounded turbulent flows. Phys Fluid 28:025112

  • Nazarian N, Krayenhoff ES, Martilli A (2020) A one-dimensional model of turbulent flow through “urban” canopies (MLUCM v2.0): updates based on large-eddy simulation. Geosci Model Dev 13:937–953

    Article  Google Scholar 

  • Nepf HM, Koch EW (1999) Vertical secondary flows in submersed plant-like arrays. Limnol Oceanogr 44(4):1072–1080

    Article  Google Scholar 

  • Nikora V, McLean S, Coleman S, Pokrajac D, McEwan I, Campbell L, Aberle J, Clunie D, Koll K (2007) Double-averaging concept for rough-bed open-channel and overland flows: theoretical background. J Hydraul Eng 133(8):884–895

    Article  Google Scholar 

  • Niroobakhsh A, Hassanzadeh S, Hosseinibalam F (2022) The vital importance of dispersive fluxes on turbulent flow and pollution ventilation in street canyons. Urban Clim 41:101032

    Article  Google Scholar 

  • Obukhov AM (1971) Turbulence in an atmosphere with a non-uniform temperature. Boundary-Layer Meteorol 2:7–29

    Article  Google Scholar 

  • Oke TR (1988) Street design and urban canopy layer climate. Energy Build 11(1–3):103–113

    Article  Google Scholar 

  • Oke TR, Mills G, Christen A, Voogt J (2017) Urban climates. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Park SB, Baik JJ, Raasch S, Letzel MO (2012) A Large-eddy simulation study of thermal effects on turbulent flow and dispersion in and above a street canyon. J Appl Meteorol Clim 51:829–841

    Article  Google Scholar 

  • Park SB, Baik JJ, Han BS (2015) Large-eddy simulation of turbulent flow in a densely built-up urban area. Environ Fluid Mech 15:235–250

    Article  Google Scholar 

  • Poggi D, Katul GG (2008) The effect of canopy roughness density on the constitutive components of the dispersive stresses. Exp Fluids 45:111–121

    Article  Google Scholar 

  • Poggi D, Katul GG, Albertson JD (2004) A note on the contribution of dispersive fluxes to momentum transfer within canopies. Boundary-Layer Meteorol 111:615–621

    Article  Google Scholar 

  • Pokrajac D, Campbell LJ, Nikora V, Manes C, McEwan I (2007) Quadrant analysis of persistent spatial velocity perturbations over square-bar roughness. Exp Fluids 42:413–423

    Article  Google Scholar 

  • Ramamurthy P, Pardyjak ER (2015) Turbulent transport of carbon dioxide over a highly vegetated suburban neighbourhood. Boundary-Layer Meteorol 157(3):461–479

    Article  Google Scholar 

  • Ramamurthy P, Pardyjak ER, Klewicki JC (2007) Observations of the effects of atmospheric stability on turbulence statistics deep within an urban street canyon. J Appl Meteorol Climatol 46(12):2074–2085

    Article  Google Scholar 

  • Rasheed A, Robinson D (2013) Characterization of dispersive fluxes in mesoscale models using LES of flow over an array of cubes. Int J Atmos Sci 10:898095

    Google Scholar 

  • Raupach MR (1994) Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index. Boundary-Layer Meteorol 71:211–216

    Article  Google Scholar 

  • Raupach MR, Shaw RH (1982) Averaging procedures for flow within vegetation canopies. Boundary-Layer Meteorol 22:79–90

    Article  Google Scholar 

  • Raupach MR, Coppin PA, Legg BJ (1986) Experiments on scalar dispersion within a model plant canopy part I: The turbulence structure. Boundary-Layer Meteorol 35:21–52

    Article  Google Scholar 

  • Raupach MR, Antonia RA, Rajagopalan S (1991) Rough-wall turbulent boundary layers. ASME Appl Mech Rev 44(1):1–25

    Article  Google Scholar 

  • Raupach MR, Finnigan JJ, Brunei Y (1996) Coherent eddies and turbulence in vegetation canopies: The mixing-layer analogy. Boundary-Layer Meteorol 78:351–382

    Article  Google Scholar 

  • Resler J, Eben K, Geletič J, Krč P, Rosecký M, Sühring M, Belda M, Fuka V, Halenka T, Huszár P, Karlický J, Benešová N, Ďoubalová J, Honzáková K, Keder J, Nápravníková Š, Vlček O (2021) Validation of the PALM model system 6.0 in a real urban environment: a case study in Dejvice, Prague, the Czech Republic. Geosci Model Dev 14:4797–4842

    Article  Google Scholar 

  • Reynolds RT, Castro IP (2008) Measurements in an urban-type boundary layer. Exp Fluids 45(1):141–156

  • Rotach MW (1999) On the influence of the urban roughness sublayer on turbulence and dispersion. Atmos Environ 33(24):4001–4008

    Article  Google Scholar 

  • Roth M (2000) Review of atmospheric turbulence over cities. Q J R Meteorol Soc 126(564):941–990

    Article  Google Scholar 

  • Scarano F, Riethmuller ML (2000) Advances in iterative multigrid PIV image processing. Exp Fluids 29(1):S051–S060

    Google Scholar 

  • Schmid MF, Lawrence GA, Parlange MB, Giometto MG (2019) Volume averaging for urban canopies. Boundary-Layer Meteorol 173:349–372

    Article  Google Scholar 

  • Shaw RH, Tavangar J, Ward DP (1983) Structure of Reynolds stress in a canopy layer. J Clim Appl Meteorol 22:1922–1931

    Article  Google Scholar 

  • Sützl BS, Rooney GG, van Reeuwijk M (2021) Drag distribution in idealized heterogeneous urban environments. Boundary-Layer Meteorol 178:225–248

    Article  Google Scholar 

  • Tian G, Conan B, Calmet I (2021) Turbulence-kinetic-energy budget in the urban-like boundary layer using large-eddy simulation. Boundary-Layer Meteorol 178:201–223

    Article  Google Scholar 

  • Torres P, Le Clainche S, Vinuesa R (2021) On the experimental, numerical and data-driven methods to study urban flows. Energies 14:1310

    Article  Google Scholar 

  • United Nations Department of Economic and Social Affairs (2018) 68% of the world population projected to live in urban areas by 2050, says UN. https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html.

  • Wallace JM (2016) Quadrant analysis in turbulence research: history and evolution. Ann Rev Fluid Mech 48:131–158

    Article  Google Scholar 

  • Wang L, Li D, Gao Z, Sun T, Guo X, Bou-Zeid E (2014) Turbulent transport of momentum and scalars above an urban canopy. Boundary-Layer Meteorol 150(3):485–511

    Article  Google Scholar 

  • Wang Y, Vita G, Fraga B, Wang J, Hemida H (2021) Effect of the inlet boundary conditions on the flow over complex terrain using large eddy simulation. Designs 5(2):34

    Article  Google Scholar 

  • Wilson NR, Shaw RH (1977) A higher order closure model for canopy flow. J Appl Meteorol 16(11):1197–1205

    Article  Google Scholar 

  • Wu X (2017) Inflow turbulence generation methods. Ann Rev Fluid Mech 49:23–49

    Article  Google Scholar 

  • Xie ZT, Castro IP (2006) LES and RANS for turbulent flow over arrays of wall-mounted obstacles. Flow Turbul Combust 76:291

    Article  Google Scholar 

  • Xie ZT, Castro IP (2009) Large-eddy simulation for flow and dispersion in urban streets. Atmospheric Environ 43:2174–2185

    Article  Google Scholar 

  • Xie ZT, Fuka V (2018) A note on spatial averaging and shear stresses within urban canopies. Boundary-Layer Meteorol 167:171–179

    Article  Google Scholar 

  • Xie ZT, Coceal O, Castro IP (2008) Large-eddy simulation of flows over random urban-like obstacles. Boundary-Layer Meteorol 129:1–23

    Article  Google Scholar 

  • Yuan J, Piomelli U (2014) Roughness effects on the Reynolds stress budgets in near-wall turbulence. J Fluid Mech 760:R1–R12

    Article  Google Scholar 

  • Zhou Y, Li D, Liu H, Li X (2018) Diurnal variations of the flux imbalance over homogeneous and heterogeneous landscapes. Boundary-Layer Meteorol 168:417–442

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by National Science Foundation (NSF) under the Award number AGS-1853354 and ICER-1854706 and Army Research Office (ARO) under the Award Number W911NF-18-1-0360. We acknowledge the high-performance computing support from Cheyenne (https://doi.org/10.5065/D6RX99HX) provided by NCAR's Computational and Information Systems Laboratory, sponsored by the National Science Foundation. Finally, we thank the PALM group at the Institute of Meteorology and Climatology of Leibniz Universität Hannover, Germany for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Akinlabi.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Dispersive Flux Fraction and Spatial Fraction for \({\overline{{\varvec{w}}} }^{{{\prime\prime}}}{\overline{{\varvec{s}}} }^{{{\prime\prime}}}\)

Appendix: Dispersive Flux Fraction and Spatial Fraction for \({\overline{{\varvec{w}}} }^{{{\prime\prime}}}{\overline{{\varvec{s}}} }^{{{\prime\prime}}}\)

For \({\overline{w} }^{{\prime\prime}}{\overline{s} }^{{\prime\prime}}\), the magnitude of dispersive flux fraction decreases with height only for ejection (\({F}_{1,{T}_{h}}\)) at all thresholds and decreases with increasing thresholds \({T}_{h}\) for all heights, like \({\overline{w} }^{{\prime\prime}}{\overline{u} }^{{\prime\prime}}\) (see Fig. 

Fig. 20
figure 20

Absolute value of the dispersive flux fraction \({F}_{i,{T}_{h}}\) normalized by \(\sum_{i}{|F}_{i,{T}_{h}}|\) for each quadrant \({Q}_{i}\) (Quadrant 1: Outward interaction (O), Quadrant 2: Sweep (S), Quadrant 3: Inward interaction (I), Quadrant 4: Ejection (E)) and for different thresholds \({T}_{h}\) for \({\overline{w} }^{{\prime\prime}}{\overline{s} }^{{\prime\prime}}\). The results at heights \(z/H=1, 4, 12\) and 30 are shown

20). At \(z/H=1\) and \(z/H=4\), only |\({F}_{{1,4}}|\) values exceeded 0.25, which is evidence that ejections are the largest structures involved in scalar transport. At \(z/H=12\), only |\({F}_{{4,4}}|\) values exceed 0.35 and at \(z/H=30\), only |\({F}_{{4,4}}|\) values exceed 0.2, which shows that the outward interaction has the largest contribution to scalar transport at these two heights. The inward interaction (\({S}_{{2,0}}\)) occupies the largest horizontal plane for all heights (see Fig. 

Fig. 21
figure 21

Space fraction \({S}_{i,{T}_{h}}/{S}_{i,0}\) for each quadrant \({Q}_{i}\) (Quadrant 1: Outward interaction (O), Quadrant 2: Sweep (S), Quadrant 3: Inward interaction (I), Quadrant 4: Ejection (E)) and for different thresholds \({T}_{h}\) for \({\overline{w} }^{{\prime\prime}}{\overline{s} }^{{\prime\prime}}\). The results at heights \({z}/{H}=1, 4, 12\) and 30 are shown

21). In summary, ejections and outward interactions are the dominant structure within the urban canopy and inertial sublayer, respectively, for \({\overline{w} }^{{\prime\prime}}{\overline{s} }^{{\prime\prime}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akinlabi, E., Maronga, B., Giometto, M.G. et al. Dispersive Fluxes Within and Over a Real Urban Canopy: A Large-Eddy Simulation Study. Boundary-Layer Meteorol 185, 93–128 (2022). https://doi.org/10.1007/s10546-022-00725-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-022-00725-6

Keywords

Navigation