Skip to main content
Log in

Aberrant expression of costimulatory molecules in splenocytes of the mevalonate kinase-deficient mouse model of human hyper-IgD syndrome (HIDS)

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Objective

We sought to determine the activation status and proliferative capacities of splenic lymphocyte populations from a mevalonate kinase-deficient mouse model of hyper-IgD syndrome (HIDS). We previously reported that murine mevalonate kinase gene ablation was embryonic lethal for homozygous mutants while heterozygotes (Mvk +/−) demonstrated several phenotypic features of human HIDS including increased serum levels of IgD, IgA, and TNFα, temperature dysregulation, hematological abnormalities, and splenomegaly.

Methods and results

Flow cytometric analysis of cell surface activation markers on T and B lymphocytes, and macrophage populations, demonstrated aberrant expression of B7 glycoproteins in all splenic cell types studied. Differences in expression levels between Mvk +/− and Mvk +/+ littermate controls were observed in both the basal state (unstimulated) and after Concanavalin A (Con-A) stimulation in vitro of whole splenocyte cultures. In Mvk +/− CD4 and CD8 T cells, alterations in expression of CD25, CD80, CD152, and CD28 were observed. Mvk +/− splenic macrophages expressed altered levels of CD80, CD86, CD40, and CD11c while Mvk +/− B lymphocytes had differential expression of CD40, CD80, and CD86. Mvk +/− splenocyte subpopulations also exhibited altered proliferative capacities in response to in vitro stimulation.

Conclusion

We postulate that imbalances in the expression of cell surface proteins necessary for activation, proliferation, and regulation of the intensity and duration of an immune response may result in defective T cell activation, proliferation, and effector functions in our model and potentially in human HIDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

APC:

Antigen presenting cell

CFSE:

5-6-carboxyfluorescein diacetate, succinimidyl ester

Con-A:

Concanavalin-A

GGDP:

Geranylgeranyl-diphosphate

EAE:

Experimental autoimmune encephalomyelitis

Foxp3:

Forkhead box P3 transcription factor

HIDS:

Human hyper-IgD syndrome

IL-:

Interleukin-

MCP-1:

Macrophage chemoattractant protein 1

MFI:

Mean fluorescence intensity

MHC:

Major histocompatibility antigen

MVK:

Mevalonate kinase

NOD:

Non-obese diabetic

TCR:

T cell antigen receptor

TH:

T helper cell

TNF:

Tumor necrosis factor

Treg:

Regulatory T cell

References

  • Allen M, Canadian Academic Detailing Corporation (2006) Statins in primary prevention: uncertainty in women, elderly. Am Fam Physician 73:973–974

    PubMed  Google Scholar 

  • Baharaki D, Dueymes M, Perrichot R, Basset C, Le Corre R, Cledes J, Youinou P (1996) Aberrant glycosylation of IgA from patients with IgA nephropathy. Glycoconj J 13:505–511

    Article  PubMed  CAS  Google Scholar 

  • Blazar BR, Taylor PA, Panoskaltsis-Mortari A, Sharpe AH, Vallera DA (1999) Opposing roles of CD28:B7 and CTLA-4:B7 pathways in regulating in vivo alloresponses in murine recipients of MHC disparate T cells. J Immunol 162:6368–6377

    PubMed  CAS  Google Scholar 

  • Butscher WG, Powers C, Olive M, Vinson C, Gardner K (1998) Coordinate transactivation of the interleukin-2 CD28 response element by c-Rel and ATF-1/CREB2. J Biol Chem 273:552–560

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Nabavi N (1994) In vitro induction of T cell anergy by blocking B7 and early T cell costimulatory molecule ETC-1/B7-2. Immunity 1:147–154

    Article  PubMed  CAS  Google Scholar 

  • Chui D, Sellakumar G, Green R, Sutton-Smith M, McQuistan T, Marek K, Morris H, Dell A, Marth J (2001) Genetic remodeling of protein glycosylation in vivo induces autoimmune disease. Proc Natl Acad Sci USA 98:1142–1147

    Article  PubMed  CAS  Google Scholar 

  • Cuthbert JA, Lipsky PE (1990) Inhibition by 6-fluoromevalonate demonstrates that mevalonate or one of the mevalonate phosphates is necessary for lymphocyte proliferation. J Biol Chem 265:18568–18575

    PubMed  CAS  Google Scholar 

  • Davis SJ, Ikemizu S, Collins AV, Fennelly JA, Harlos K, Jones EY, Stuart DI (2001) Crystallization and functional analysis of a soluble deglycosylated form of the human costimulatory molecule B7-1. Acta Crystallogr D Biol Crystallogr 57:605–608

    Article  PubMed  CAS  Google Scholar 

  • Ferrario CM (2008) Of gender, statins, and coronary artery interventions. Ther Adv Cardiovasc Dis 2:73–74

    Article  PubMed  Google Scholar 

  • Fife BT, Bluestone JA (2008) Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol Rev 224:166–182

    Article  PubMed  CAS  Google Scholar 

  • Freeman GJ, Borriello F, Hodes RJ, Reiser H, Gribben JJ, Ng JW, Kim J, Goldberg JM, Hathcock KGL, Lombard LA, Wang S, Gray G, Nadler LM, Sharpe AH (1993) Murine B7-2, and alternative CTLA-4 counter-receptor that costimulates T cell proliferation and interleukin-2 production. J Exp Med 178:2185–2192

    Article  PubMed  CAS  Google Scholar 

  • Goldfinger S (2009) The inherited autoinflammatory syndrome: a decade of discovery. Trans Am Clin Climatol Assoc 120:413–418

    PubMed  Google Scholar 

  • Greenfield EA, Howard E, Paradis T, Nguyen K, Benazzo F, McLean P, Höllsberg P, Davis G, Hafler DA, Sharpe AH, Freeman GJ, Kuchroo VK (1997) B7.2 expressed by T cells does not induce CD28-mediated costimulatory activity but retains CTLA4 binding: implications for induction of antitumor immunity to T cell tumors. J Immunol 158:2025–2034

    PubMed  CAS  Google Scholar 

  • Greenwald RJ, Freeman GJ, Sharpe AH (2005) The B7 family revisited. Annu Rev Immunol 23:515–548

    Article  PubMed  Google Scholar 

  • Hager EJ, Tse HM, Piganelli JD, Gupta M, Baetscher M, Tse TE, Pappu AS, Steiner RD, Hoffmann GF, Gibson KM (2007) Deletion of a single mevalonate kinase (Mvk) allele yields a murine model of hyper-IgD syndrome. J Inherit Metab Dis 30:888–895

    Article  PubMed  CAS  Google Scholar 

  • Hara Y, Kitazawa Y, Funeshima N, Kawasaki M, Sato Y, Tezuka K, Kimura H, Hatakeyama K, Li XK (2006) Anergic lymphocytes generated by blocking CD28 and ICOS pathways in vitro prolong rat cardiac graft survival. Int Immunopharmacol 6:1143–1151

    Article  PubMed  CAS  Google Scholar 

  • Hiki Y, Kokubo T, Iwase H, Masaki Y, Sano T, Tanaka A, Toma K, Hotta K, Kobayashi Y (1999) Underglycosylation of IgA1 hinge plays a certain role for its glomerular deposition in IgA nephropathy. J Am Soc Nephrol 10:760–769

    PubMed  CAS  Google Scholar 

  • Ip WK, Wong CK, Leung TF, Lam CW (2006) Plasma concentrations of soluble CTLA-4, CD28, CD80 and CD86 costimulatory molecules reflect disease severity of acute asthma in children. Pediatr Pulmonol 41:674–682

    Article  PubMed  CAS  Google Scholar 

  • Jenkins MK, Taylor PS, Norton SD, Urdahl KB (1991) CD28 delivers a costimulatory signal involved in antigen-specific IL-2 production by human T cells. J Immunol 147:2461–2466

    PubMed  CAS  Google Scholar 

  • Kearney ER, Pape KA, Loh DY, Jenkins MK (1994) Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo. Immunity 1:327–339

    Article  PubMed  CAS  Google Scholar 

  • Keir ME, Sharpe AH (2005) The B7/CD28 costimulatory family in autoimmunity. Immunol Rev 204:128–143

    Article  PubMed  CAS  Google Scholar 

  • Kim YC, Kim KK, Shevach EM (2010) Simvastatin induces Foxp3+ T regulatory cells by modulation of transforming growth factor-beta signal transduction. Immunology 130(4):489–493

    Google Scholar 

  • Krummel MF, Allison JP (1996) CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J Exp Med 183:2533–2540

    Article  PubMed  CAS  Google Scholar 

  • Li R, Perez N, Karumuthil-Melethil S, Prabhakar BS, Holterman MJ, Vasu C (2007) Enhanced engagement of CTLA-4 induces antigen-specific CD4 + CD25 + Foxp3+ and CD4 + CD25 TGF-beta1+ adaptive regulatory T cells. J Immunol 179:5191–5203

    PubMed  CAS  Google Scholar 

  • Lohr J, Knoechel B, Jiang S, Sharpe AH, Abbas AK (2003) The inhibitory function of B7 costimulators in T cell responses to foreign and self-antigens. Nat Immunol 4:664–669

    Article  PubMed  CAS  Google Scholar 

  • Mantha AJ, Hanson JE, Goss G, Lagarde AE, Lorimer IA, Dimitroulakos J (2005) Targeting the mevalonate pathway inhibits the function of the epidermal growth factor receptor. Clin Cancer Res 11:2398–2407

    Article  PubMed  CAS  Google Scholar 

  • Manzotti CN, Tipping H, Perry LC, Mead KI, Blair PJ, Zheng Y, Sansom DM (2002) Inhibition of human T cell proliferation by CTLA-4 utilizes CD80 and requires CD25+ regulatory T cells. Eur J Immunol 32:2888–2896

    Article  PubMed  CAS  Google Scholar 

  • McAdam AJ, Chang TT, Lumelsky AE, Greenfield EA, Boussiotis VA, Duke-Cohan JS, Chernova T, Malenkovich N, Jabs C, Kuchroo VK, Ling V, Collins M, Sharpe AH, Freeman GJ (2000) Mouse inducible costimulatory molecule (ICOS) expression is enhanced by CD28 costimulation and regulates differentiation of CD4+ T cells. J Immunol 165:5035–5040

    PubMed  CAS  Google Scholar 

  • Notarangelo LD, Fischer A, Geha RS, Casanova JL, Chapel H, Conley ME, Cunningham-Rundles C, Etzioni A, Hammartröm L, Nonoyama S, Ochs HD, Puck J, Roifman C, Seger R, Wedgwood J (2009) Primary immunodeficiencies: 2009 update. J Allergy Clin Immunol 124:1161–1178

    Article  PubMed  CAS  Google Scholar 

  • Perez N, Karumuthil-Melethil S, Li R, Prabhakar BS, Holterman MJ, Vasu C (2008) Preferential costimulation by CD80 results in IL-10-dependent TGF-beta1(+) -adaptive regulatory T cell generation. J Immunol 180:6566–6576

    PubMed  CAS  Google Scholar 

  • Perkins D, Wang Z, Donovan C, He H, Mark D, Guan G, Wang Y, Walunas T, Bluestone J, Listman J, Finn PW (1996) Regulation of CTLA4 expression during T cell activation. J Immunol 32:366–373

    Google Scholar 

  • Salomon B, Bluestone JA (2001) Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu Rev Immunol 19:225–252

    Article  PubMed  CAS  Google Scholar 

  • Sethna MP, van Parijs L, Sharpe AH, Abbas AK, Freeman GJ (1994) A negative regulatory function of B7 revealed in B7-1 transgenic mice. Immunity 1:415–421

    Article  PubMed  CAS  Google Scholar 

  • Taylor PA, Lees CJ, Fournier S, Allison JP, Sharpe AH, Blazar BR (2004) B7 expression on T cells down-regulates immune responses through CTLA-4 ligation via T-T interactions. J Immunol 172:34–39

    PubMed  CAS  Google Scholar 

  • Vasu C, Prabhakar BS, Holterman MJ (2004) Targeted CTLA-4 engagement induces CD4+CD25+CTLA-4high T regulatory cells with target (allo) antigen specificity. J Immunol 173:2866–2876

    PubMed  CAS  Google Scholar 

  • Wentworth JM, Naselli G, Brown WA et al. (2010) Pro-inflammatory CD11c+CD206+ adipose tissue macrophages are associated with insulin resistance in human obesity. Diabetes 59(7):1648–1656

    Google Scholar 

  • Wong CK, Lit LC, Tam LS, Li EK, Lam CW (2005) Aberrant production of soluble costimulatory molecules CTLA-4, CD28, CD80 and CD86 in patients with systemic lupus erythematosus. Rheumatology 44:989–994

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Sherri Wiseman, Tara Rutledge, and Stephanie Guimond for their excellent technical assistance.

Supported in part by a grant from the Research Advisory Committee (RAC) Children’s Hospital of Pittsburgh, NIH HD57864 (KMG), and the Sterol and Isoprenoid Diseases (STAIR) consortium. STAIR is a part of NIH Rare Diseases Clinical Research Network (RDCRN). Funding and/or programmatic support for this project has been provided by a grant (1U54HD061939) from NICHD and the NIH Office of Rare Diseases Research (ORDR). The views expressed in written materials or publications do not necessarily reflect the official policies of the Department of Health and Human Services nor does mention by trade names commercial practices, or organizations imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Michael Gibson.

Additional information

Communicated by: Robert Steiner

Competing interest: None declared.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hager, E.J., Piganelli, J.D., Tse, H.M. et al. Aberrant expression of costimulatory molecules in splenocytes of the mevalonate kinase-deficient mouse model of human hyper-IgD syndrome (HIDS). J Inherit Metab Dis 35, 159–168 (2012). https://doi.org/10.1007/s10545-011-9349-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-011-9349-x

Keywords

Navigation