Skip to main content
Log in

Anaplerotic molecules: Current and future

  • SSIEM SYMPOSIUM 2005
  • Published:
Journal of Inherited Metabolic Disease

Summary

This review presents the concepts of anaplerosis and cataplerosis in relation to the regulation of citric acid cycle operation. Anaplerosis is the re-filling of the catalytic intermediates of the cycle that carry acetyl-CoA as it is oxidized. The main anaplerotic substrates are pyruvate, glutamine/glutamate and precursors of propionyl-CoA (odd-chain fatty acids, specific amino acids, C5-ketone bodies). Cataplerosis balances anaplerosis by removing excess intermediates from the citric acid cycle. The properties of the main anaplerotic substrates are reviewed from the point of view of potential clinical applications to the treatment of some inherited and acquired conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aragon JJ, Tornheim K, Goodman MN, Lowenstein JM (1981) Replenishment of citric acid cycle intermediates by the purine nucleotide cycle in rat skeletal muscle. Curr Top Cell Regul 18: 131–149.

    PubMed  CAS  Google Scholar 

  • Ardawi MS, Newsholme EA (1982) Maximum activities of some enzymes of glycolysis, the tricarboxylic acid cycle and ketone-body and glutamine utilization pathways in lymphocytes of the rat. Biochem J 208: 743–748.

    PubMed  CAS  Google Scholar 

  • Bassenge E, Sommer O, Schwemmer M, Bunger R (2000) Antioxidant pyruvate inhibits cardiac formation of reactive oxygen species through changes in redox state. Am J Physiol Heart Circ Physiol 279: H2431–H2438.

    PubMed  CAS  Google Scholar 

  • Birkhahn RH, Border JR (1978) Intravenous feeding of the rat with short chain fatty acid esters. II. Monoacetoacetin. Am J Clin Nutr 31: 436–441.

    PubMed  CAS  Google Scholar 

  • Brunengraber H, Boutry M, Lowenstein JM (1973) Fatty acid and 3-β -hydroxysterol synthesis in the perfused rat liver. Including measurements on the production of lactate, pyruvate, β -hydroxy-butyrate, and acetoacetate by the fed liver. J Biol Chem 248: 2656–2669.

    PubMed  CAS  Google Scholar 

  • Bunger R, Swindall B, Brodie D, Zdunek D, Stiegler H, Walter G (1986) Pyruvate attenuation of hypoxia damage in isolated working guinea-pig heart. J Mol Cell Cardiol 18: 423–438.

    PubMed  CAS  Google Scholar 

  • Hermann HP, Arp J, Pieske B, et al (2004) Improved systolic and diastolic myocardial function with intracoronary pyruvate in patients with congestive heart failure. Eur J Heart Fail 6: 213–218.

    Article  PubMed  CAS  Google Scholar 

  • Jessen ME, Kovarik TE, Jeffrey FM, et al (1993) Effects of amino acids on substrate selection, anaplerosis, and left ventricular function in the ischemic reperfused rat heart. J Clin Invest 92: 831–839.

    Article  PubMed  CAS  Google Scholar 

  • Kasumov T, Cendrowski A, David F, Jobbins K, Anderson VE, Brunengraber H (2006) Anaplerosis from propionate inhibits protein catabolism in the perfused rat heart. FASEB J 20: A740 (Abstract 468.7).

    Google Scholar 

  • Khogali SE, Harper AA, Lyall JA, Rennie MJ (1998) Effects of l-glutamine on postischaemic cardiac function: protection and rescue. J Mol Cell Cardiol 30: 819–827.

    Article  PubMed  CAS  Google Scholar 

  • Krebs, HA, Hems R, Weidemann MJ, et al (1966) The fate of isotopic carbon in kidney cortex synthesizing glucose from lactate. Biochem J 101: 242–249.

    PubMed  CAS  Google Scholar 

  • Kristo G, Yoshimura Y, Niu J, et al (2004) The intermediary metabolite pyruvate attenuates stunning and reduces infarct size in in vivo porcine myocardium. Am J Physiol Heart Circ Physiol 286: H517–H524.

    Article  PubMed  CAS  Google Scholar 

  • Leclerc J, Des Rosiers C, Montgomery JA, et al (1995) Metabolism of R-beta-hydroxypentanoate and of beta-ketopentanoate in conscious dogs. Am J Physiol 268: E446–E452.

    PubMed  CAS  Google Scholar 

  • MacDonald MJ, Fahien LA, Brown LJ, Hasan NM, Buss JD, Kendrick MA (2005) Perspective: emerging evidence for signaling roles of mitochondrial anaplerotic products in insulin secretion. Am J Physiol Endocrinol Metab 288: E1–E15.

    Article  PubMed  CAS  Google Scholar 

  • McGarry JD, Foster DW (1980) Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem 49: 395–420.

    Article  PubMed  CAS  Google Scholar 

  • Mentzer RM Jr, Van Wylen DG, Sodhi J, et al (1989) Effect of pyruvate on regional ventricular function in normal and stunned myocardium. Ann Surg 209: 629–633.

    PubMed  Google Scholar 

  • Mochel F, DeLonlay P, Touati G, et al (2005) Pyruvate carboxylase deficiency: clinical and biochemical response to anaplerotic diet therapy. Mol Genet Metab 84: 305–312.

    Article  PubMed  CAS  Google Scholar 

  • Puchowicz MA, Bederman IR, Comte B, et al (1999) Zonation of acetate labeling across the liver: implications for studies of lipogenesis by MIDA. Am J Physiol 277: E1022–E1027.

    PubMed  CAS  Google Scholar 

  • Reszko AE, Kasumov T, Pierce BA, et al (2003) Assessing the reversibility of the anaplerotic reactions of the propionyl-CoA pathway in heart and liver. J Biol Chem 278: 34959–34965.

    Article  PubMed  CAS  Google Scholar 

  • Roe CR, Mochel F (2006) Anaplerotic diet therapy in inherited metabolic diseases: therapeutic potential. J Inherit Metab Dis 29: 332–340.

    PubMed  CAS  Google Scholar 

  • Roe CR, Sweetman L, Roe DS, David F, Brunengraber H (2002) Treatment of cardiomyopathy and rhabdomyolysis in long-chain fat oxidation disorders using an anaplerotic odd-chain triglyceride. J Clin Invest 110: 259–269.

    Article  PubMed  CAS  Google Scholar 

  • Russell RR III, Taegtmeyer H (1991) Pyruvate carboxylation prevents the decline in contractile function of rat hearts oxidizing acetoacetate. Am J Physiol 261: H1756–H1762.

    Google Scholar 

  • Russell RR III, Mommessin JI, Taegtmeyer H (1995) Propionyl-l-carnitine-mediated improvement in contractile function of rat hearts oxidizing acetoacetate. Am J Physiol 268: H441–H447.

    Google Scholar 

  • Sibson NR, Mason GF, Shen J, et al (2001) In vivo 13C NMR measurement of neurotransmitter glutamate cycling, anaplerosis and TCA cycle flux in rat brain during [2-13C]glucose infusion J Neurochem 76: 975–989.

    Article  PubMed  CAS  Google Scholar 

  • Stanley WC, Kivilo KM, Panchal AR, et al (2003) Post-ischemic treatment with dipyruvyl-acetyl-glycerol decreases myocardial infarct size in the pig. Cardiovasc Drugs Ther 17: 209–216.

    Article  PubMed  CAS  Google Scholar 

  • Williamson JR, Scholz R, Browning ET (1969) Control mechanisms of gluconeogenesis and ketogenesis. II. Interactions between fatty acid oxidation and the citric acid cycle in perfused rat liver. J Biol Chem 244: 4617–4627.

    PubMed  CAS  Google Scholar 

  • Yu L, Kasumov T, Jobbins K, et al (2006) The anaplerotic potential of pentanoate and β -ketopentanoate in pig heart in vivo. FASEB J 20: A862 (Abstract 530.8).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henri Brunengraber.

Additional information

Communicating editor: Jean-Marie Saudubray

Competing interests: None declared

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brunengraber, H., Roe, C.R. Anaplerotic molecules: Current and future. J Inherit Metab Dis 29, 327–331 (2006). https://doi.org/10.1007/s10545-006-0320-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-006-0320-1

Keywords

Navigation