Skip to main content
Log in

3D printed transwell-integrated nose-on-chip model to evaluate effects of air flow-induced mechanical stresses on mucous secretion

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

While there are many chip models that simulate the air-tissue interface of the respiratory system, only a few represent the upper respiratory system. These chips are restricted to unidirectional flow patterns that are not comparable to the highly dynamic and variable flow patterns found in the native nasal cavity. Here we describe the development of a tunable nose-on-chip device that mimics the air-mucosa interface and is coupled to an air delivery system that simulates natural breathing patterns through the generation of bi-directional air flow. Additionally, we employ computational modeling to demonstrate how the device design can be tuned to replicate desired mechanical characteristics within specific regions of the human nasal cavity. We also demonstrate how to culture human nasal epithelial cell line RPMI 2650 within the lab-on-chip (LOC) device. Lastly, Alcian Blue histological staining was performed to label mucin proteins, which play important roles in mucous secretion. Our results revealed that dynamic flow conditions can increase mucous secretion for RPMI 2650 cells, when compared to no flow, or stationary, conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • A. Mistry, S. Stolnik, L. Illum, Int. J. Pharm. 379, 146–157 (2009)

    Article  Google Scholar 

  • S. Bai, T. Yang, T.J. Abbruscato, F. Ahsan, J. Pharm. Sci. (2007)

  • C. Mercier, N. Perek, X. Delavenne, Eur. J. Drug Metab. Pharmacokinet. 43, 13–24 (2018)

    Article  Google Scholar 

  • S. Reichl, K. Becker, J. Pharm. Pharmacol. 64, 1621–1630 (2012)

    Article  Google Scholar 

  • A. Wengst, S. Reichl, Eur. J. Pharm. Biopharm. 74, 290–297 (2010)

    Article  Google Scholar 

  • N. Even-Tzur, D. Elad, U. Zaretsky, S.H. Randell, R. Haklai, M. Wolf, Ann. Biomed. Eng. 34, 1890–1895 (2006)

    Article  Google Scholar 

  • N. Even-Tzur, Y. Kloog, M. Wolf, D. Elad, Biophys. J. 95, 2998–3008 (2008)

    Article  Google Scholar 

  • S. Ladel, P. Schlossbauer, J. Flamm, H. Luksch, B. Mizaikoff, K. Schindowski, Pharmaceutics. (2019)

  • T. Shimizu, H. Hirano, S. Shimizu, C. Kishioka, Y. Sakakura, Y. Majima, Am. J. Respir. Crit. Care Med. 164, 1077–1082 (2001)

    Article  Google Scholar 

  • A. Yuta, W.J. Doyle, E. Gaumond, M. Ali, L. Tamarkin, J.N. Baraniuk, M. Van Deusen, S. Cohen, D.P. Skoner, Am. J. Physiol. - Lung Cell. Mol. Physiol. (1998)

  • M. Kaliner, J.H. Shelhamer, B. Borson, J. Nadel, C. Patow, Z. Marom, Am. Rev. Respir. Dis. 134, 612–621 (1986)

    Google Scholar 

  • A. Lechanteur, J. das Neves, B. Sarmento, Adv. Drug Deliv. Rev. 124, 50–63 (2018)

    Article  Google Scholar 

  • M. Pozzoli, F. Sonvico, H.X. Ong, D. Traini, M. Bebawy, P.M. Young, in Respiratory Drug Delivery (2014)

  • S. Grau-Bartual, A.M. Al-Jumaily, P.M. Young, D. Traini, and M. Ghadiri, Eur. Respir. Soc. (2019)

  • K. Na, M. Lee, H. Shin, S.C.-L. on a Chip, U. 2017, Lab Chip 17, 1578–1584 (2017)

  • W. Wang, Y. Yan, C.W. Li, H.M. Xia, S.S. Chao, D.Y. Wang, Z.P. Wang, Lab Chip 14, 677–680 (2014)

    Article  Google Scholar 

  • X.A. Figueroa, G.A. Cooksey, S.V. Votaw, L.F. Horowitz, A. Folch, Lab Chip (2010)

  • T. Datta-Chaudhuri, R.C. Araneda, P. Abshire, E. Smela, Sensors Actuators, B Chem. (2016)

  • K. Keyhani, P.W. Scherer, M.M. Mozell, J. Biomech. Eng. 117, 429–441 (1995)

    Article  Google Scholar 

  • C. Li, A.A. Farag, G. Maza, S. McGhee, M.A. Ciccone, B. Deshpande, E.A. Pribitkin, B.A. Otto, K. Zhao, Int. Forum Allergy Rhinol. 8, 444–452 (2018)

    Article  Google Scholar 

  • J.T. Kelly, A.K. Prasad, A.S. Wexler, J. Appl. Physiol. 89, 323–337 (2000)

    Article  Google Scholar 

  • I. Hahn, P.W. Scherer, M.M. Mozell, J. Appl. Physiol. 75, 2273–2287 (1993)

    Article  Google Scholar 

  • K. Zhao, J. Jiang, Int. Forum Allergy Rhinol. 4, 435–446 (2014)

    Article  Google Scholar 

  • D. Elad, S. Naftali, M. Rosenfeld, M. Wolf, J. Appl. Physiol. 100, 1003–1010 (2006)

    Article  Google Scholar 

  • D. Huh, B.D. Matthews, A. Mammoto, M. Montoya-Zavala, H. Yuan Hsin, D.E. Ingber, Science 328(5986), 1662–1668 (2010)

  • D. Trieu, T.K. Waddell, A.P. McGuigan, Biomicrofluidics 8, 1–14 (2014)

    Article  Google Scholar 

  • D. Erickson, Microfluid. Nanofluidics (2005)

  • D.A. Boy, F. Gibou, S. Pennathur, Lab Chip 8, 1424–1431 (2008)

    Article  Google Scholar 

  • M. Pozzoli, H.X. Ong, L. Morgan, M. Sukkar, D. Traini, P.M. Young, F. Sonvico, Eur. J. Pharm. Biopharm. 107, 223–233 (2016)

    Article  Google Scholar 

  • P. Dey, Basic and Advanced Laboratory Techniques in Histopathology and Cytology (2018)

  • J.T. Berger, J.A. Voynow, K.W. Peters, M.C. Rose, Am. J. Respir. Cell Mol. Biol. 20, 500–510 (1999)

    Article  Google Scholar 

  • M.E.S. Ali, D.M. Bulmer, P.W. Dettmar, J.P. Pearson, Int. J. Otolaryngol. (2014)

  • S. Gänger, K. Schindowski, Pharmaceutics 10, 116 (2018)

    Article  Google Scholar 

  • M.Y. Di, Z. Jiang, Z.Q. Gao, Z. Li, Y.R. An, W. Lv, PLoS One 8, e84243 (2013)

Download references

Acknowledgements

We appreciate David Mohl (WPAFB) for his advice on development of airflow generation systems. We are grateful to Joe Althaus, Tom Mitchell, and Logan Rowland, MakerHub staff (Wright Brothers Institute, Dayton, OH) for their guidance and assistance with 3D printing. Angela Dixon, Ph.D., was supported by a National Research Council Research Assistantship and Zachary Brooks, M.S., by a Defense Associated Graduate Student Innovators (DAGSI) Graduate Fellowship. This material is based on research sponsored by the Air Force Research Laboratory and the Southwestern Council for Higher Education under agreement FA8650-19-2-9300. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of Southwestern Ohio Council for Higher Education and the Air Force Research Laboratory (AFRL) or the U.S. Government.

Funding

This material is based on research sponsored by the Air Force Research Laboratory and the Southwestern Council for Higher Education under agreement FA8650-19–2-9300.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saber Hussain or Angela R. Dixon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 42 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brooks, Z., Kim, K., Zhao, K. et al. 3D printed transwell-integrated nose-on-chip model to evaluate effects of air flow-induced mechanical stresses on mucous secretion. Biomed Microdevices 24, 8 (2022). https://doi.org/10.1007/s10544-021-00602-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10544-021-00602-y

Keywords

Navigation