Skip to main content
Log in

3D-Printed micro-optofluidic device for chemical fluids and cells detection

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

In this work, it is presented a micro-optofluidic flow detector used for on-chip biological and chemical samples investigation. It is made in Poly-dimethyl-siloxane using a master-slave approach based on the 3D-Printing techniques. The micro-optofluidic device is made by assembling a microfluidic T-junction with a micro-optical section that consists of two optical fiber insertions and a PDMS gold-spattered micro-waveguide. The working principle in the detection is based on a different light transmission correlated to the fluid interfering with the laser beam in a micro-channel section. The proposed solution allows to realize a PDMS micro-device taking the advantage of 3D- Printing and goes beyond the restriction in the material selection. The device’s performances were tested in the fluids detection and in the evaluation of the cell concentrations. Additionally, the micro-device was used as a real-time two-phase fluids flow detector. The two-phases flows were successfully monitored in different experimental conditions, varying both hydrodynamic and optical external stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • A.K. Au, W. Huynh, L.F. Horowitz, A. Folch, 3D-printed microfluidics. Angew. Chem. Int. 55(12), 3862–3881 (2016)

    Article  Google Scholar 

  • N. Bhattacharjee, A. Urrios, S. Kanga, A. Folch, The upcoming 3D-printing revolution in microfluidics. Lab on a Chip. 16(10), 1720–1742 (2016)

    Article  Google Scholar 

  • H. Becker, L.E. Locascio, Polymer microfluidics devices. Talanta. 56(2), 267–287 (2002)

    Article  Google Scholar 

  • M. Brammer, T. Mappes, Modular platforms for optofluidic systems. Optofluidics. 1(1), 1–10 (2010)

    Google Scholar 

  • M. Bucolo, J. Guo, M. Intaglietta, W. Coltro, Special issue on microfluidics engineering for point-of-care diagnostics. IEEE Trans. Biomed. Circ. Syst. 11(6), 1488–1499 (2017)

    Article  Google Scholar 

  • F. Cairone, S. Gagliano, D. Carbone, G. Recca, M. Bucolo, Micro-optofluidic switch realized by 3D printing technology. Microfluid. Nanofluid. 20(4), 1–10 (2016a)

    Article  Google Scholar 

  • F. Cairone, S. Gagliano, M. Bucolo, Experimental study on the slug flow in a serpentine microchannel. Int. J. Exp. Thermal Fluid Sci. 76, 34–44 (2016b)

    Article  Google Scholar 

  • F. Cairone, D. Mirabella, P.J. Cabrales, M. Intaglietta, M. Bucolo, Quantitative analysis of spatial irregularities in RBCs flows. Chaos Solitons and Fractals. 115, 349–355 (2018a)

    Article  Google Scholar 

  • F. Cairone, D. Ortiz, P.J. Cabrales, M. Intaglietta, M. Bucolo, Emergent behaviors in RBCs flows in micro-channels using digital particle image velocimetry. Microvasc. Res. 116, 77–86 (2018b)

    Article  Google Scholar 

  • S. Camou, H. Fujita, T. Fujii, PDMS 2D optical lens integrated with microfluidic channels: principle and characterization. Lab Chip. 3, 40–45 (2003)

    Article  Google Scholar 

  • H.N. Chan, Y. Chen, Y. Shu, Y. Chen, Q. Tian, H. Wu, Direct, one-step molding of 3D-printed structures for convenient fabrication of truly 3D PDMS microfluidic chips. Microfluid. Nanofluid. 19(1), 9–18 (2015)

    Article  Google Scholar 

  • H.N. Chan, M.J.A. Tan, H. Wu, Point-of-care testing: Applications of 3D printing. Lab Chip. 17(16), 2713–2739 (2017)

    Article  Google Scholar 

  • D.A. Chang-Yen, R.K. Eich, B.K. Gale, A monolithic PDMS waveguide system fabricated using soft-lithography techniques. J. Lightwave Technol. 23(6), 2088–2093 (2005)

    Article  Google Scholar 

  • H. Cong, F.C. Loo, J. Chen, Y. Wang, S.K. Kong, H.P. Ho, Target trapping and in situ single-cell genetic marker detection with a focused optical beam. Biosens Bioelectron. 133, 236–242 (2019)

    Article  Google Scholar 

  • A. Cossarizza, H.D. Chang, A. Radbruch, M. Akdis, I. Andrä, F. Annunziato, Guidelines for the use of flow cytometry and cell sorting in immunological studies. Eur. J. Immunol. 47(10), 1584–1797 (2017)

    Article  Google Scholar 

  • S. Gagliano, G. Stella, M. Bucolo, Real-time detection of slug velocity in microchannels. Micromachines. 11(3), 241 (2020)

    Article  Google Scholar 

  • P.C.H. Li, Microfluidics Lab-on-a-Chip for Chemical and Biological Analysis and Discovery, p. 94. CRC Taylor and Francis (2006)

  • A. Llobera, R. Wilke, S. Buttgenbach, Enhancement of the response of poly(dimethylsiloxane) hollow prisms through air mirrors for absorbance-based sensing. Talanta. 75(2), 473–479 (2008)

    Article  Google Scholar 

  • J.C. McDonald, G.M. Whitesides, Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 35(7), 491–499 (2002)

    Article  Google Scholar 

  • N.P. Macdonald, J.M. Cabot, P. Smejkal, R.M. Guijt, B. Paull, M.C. Breadmore, Comparing microfluidic perfomance of three-dimensional (3D) printing platform. Anal. Chem. 89(7), 3858–3866 (2017)

    Article  Google Scholar 

  • P. Minzioni, R. Osellame, C. Sada, S. Zhao, F.G. Omenetto, K.B. Gylfason, T. Haraldsson, Y. Zhang, A. Ozcan, A. Wax, Roadmap for optofluidics. J. Optic, 19(9) (2017)

  • J.M. Ng, I. Gitlin, A.D. Stroock, G.M. Whitesides, Components for integrated poly (dimethylsiloxane) microfluidic systems. Electrophoresis. 23(20), 3461–3473 (2007)

    Article  Google Scholar 

  • F. Sapuppo, A. Llobera, F. Schembri, M. Intaglietta, V.J. Cadarso, M. Bucolo, A polymeric micro-optical interface for flow monitoring in biomicrofluidics. Biomicrofluidics. 4(2), 6258 (2010)

    Article  Google Scholar 

  • F. Sapuppo, F. Schembri, L. Fortuna, A. Llobera, M. Bucolo, A polymeric micro-optical system for the spatial monitoring in two-phase microfluidics. Microfluid. Nanofluid. 12, 165 (2012)

    Article  Google Scholar 

  • D.I. Walsh, D.S. Kong, S.K. Murthy, P.A. Carr, Enabling microfluidics: From clean rooms to makerspaces. Trends Biotechnol. 35(5), 383–392 (2017)

    Article  Google Scholar 

  • G. Weisgrab, A. Ovsianikov, P.F. Costa, Functional 3D printing for microfluidic chips. Adv. Mater. Technol. 4(10), 1900275 (2019)

    Article  Google Scholar 

  • A. Yamaguchi, T. Fukuoka, K. Kuroda, R. Hara, Y. Utsumi, Dielectrophoresis-enabled surface enhanced Raman scattering of glycine modified on Au-nanoparticle-decorated polystyrene beads in micro-optofluidic devices. Colloids Surf. A Physicochem. Eng. Asp. 507, 118–123 (2016)

    Article  Google Scholar 

  • A.A. Yazdi, A. Popma, W. Wong, T. Nguyen, Y. Pan, J. Xu, 3D printing: An emerging tool for novel microfluidics and lab-on-a-chip applications. Microfluidics and Nanofluidics. 20(3), 50 (2016)

    Article  Google Scholar 

  • F. Yeshaiahu, L.P. Lee, D. Psaltis, C. Yang, Optofluidics Fundamentals. Devices and Application. McGraw-Hill (2010)

  • H.T. Zhaoa, Y. Zhang, P.Y. Liu, P.H. Yap, W. Ser, A.Q. Liu, Chemical reaction monitoring via the light focusing in optofluidic. Waveguides. 280, 16–23 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maide Bucolo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cairone, F., Davi, S., Stella, G. et al. 3D-Printed micro-optofluidic device for chemical fluids and cells detection. Biomed Microdevices 22, 37 (2020). https://doi.org/10.1007/s10544-020-00487-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-020-00487-3

Keywords

Navigation