Skip to main content
Log in

An analytic model of microfluidic system triggered by thermal expansion

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Microfluidics shows a great importance in fluid control in biomedicine area. Recently, a programmable soft microfluidic system for applications of pharmacology and optogenetics is reported in Cell. Based on the theory of thermal expansion, we established an analytic model to characterize the injection process of the microfluidic systems. Finite element analyses (FEA) were employed to validate this model. The comparison between the analytic model and FEA well demonstrates the practicality of the analytic model. We also make a parametric analysis of sphere radius, central angle and expandable layer thickness on the infusion volume of the system to optimize the design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • A.R. Abate, D.A. Weitz, Single-layer membrane valves for elastomeric microfluidic devices. Appl. Phys. Lett. 92, 243509 (2008)

    Article  Google Scholar 

  • A.R. Abate, M.B. Romanowsky, J.J. Agresti, D.A. Weitz, Valve-based flow focusing for drop formation. Appl. Phys. Lett. 94, 023503 (2009)

    Article  Google Scholar 

  • A.R. Abate, J.J. Agresti, D.A. Weitz, Microfluidic sorting with high-speed single-layer membrane valves. Appl. Phys. Lett. 96, 203509 (2010)

    Article  Google Scholar 

  • A. Alrifaiy, O.A. Lindahl, K. Ramser, Polymer-based microfluidic devices for pharmacy, biology and tissue engineering. Polymers 4, 1349–1398 (2012)

    Article  Google Scholar 

  • H. Andersson, D.B.A. Van, Microfabrication and microfluidics for tissue engineering: State of the art and future opportunities. Lab Chip 4, 98–103 (2004)

    Article  Google Scholar 

  • J.Z. Chen, A.A. Darhuber, S.M. Troian, S. Wagner, Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation. Lab Chip 4, 473–480 (2004)

    Article  Google Scholar 

  • P.S. Dittrich, A. Manz, Lab-on-a-chip: Microfluidics in drug discovery. Nat. Rev. Drug Discov. 5, 210 (2006)

    Article  Google Scholar 

  • A.Y. Fu, H.P. Chou, C. Spence, F.H. Arnold, S.R. Quake, An integrated microfabricated cell sorter. Anal. Chem. 74, 2451–2457 (2002)

    Article  Google Scholar 

  • A.M. Ganan-Calvo, J.M. Montanero, L. Martin-Banderas, M. Flores-Mosquera, Building functional materials for health care and pharmacy from microfluidic principles and flow focusing. Adv. Drug Deliv. Rev. 65, 1447–1469 (2013)

    Article  Google Scholar 

  • D. Huh, W. Gu, Y. Kamotani, J.B. Grotberg, S. Takayama, Microfluidics for flow cytometric analysis of cells and particles. Physiol. Meas. 26, R73–R98 (2005)

    Article  Google Scholar 

  • W.W. Jeong, C. Kim, One-step method for monodisperse microbiogels by glass capillary microfluidics. Colloids Surf. A Physicochem. Eng. Asp. 384, 268–273 (2011)

    Article  Google Scholar 

  • J.-W. Jeong, J.G. Mccall, G. Shin, Y. Zhang, R. Al-Hasani, M. Kim, S. Li, J.Y. Sim, K.-I. Jang, Y. Shi, D.Y. Hong, Y. Liu, G.P. Schmitz, L. Xia, Z. He, P. Gamble, W.Z. Ray, Y. Huang, M.R. Bruchas, J.A. Rogers, Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell 162, 662–674 (2015)

    Article  Google Scholar 

  • T.B. Jones, M. Gunji, M. Washizu, M.J. Feldman, Dielectrophoretic liquid actuation and nanodroplet formation. J. Appl. Phys. 89, 1441–1448 (2001)

    Article  Google Scholar 

  • P. Mach, T. Krupenkin, S. Yang, J.A. Rogers, Dynamic tuning of optical waveguides with electrowetting pumps and recirculating fluid channels. Appl. Phys. Lett. 81, 202–204 (2002)

    Article  Google Scholar 

  • S. Metz, A. Bertsch, D. Bertrand, P. Renaud, Flexible polyimide probes with microelectrodes and embedded microfluidic channels for simultaneous drug delivery and multi-channel monitoring of bioelectric activity. Biosens. Bioelectron. 19, 1309–1318 (2004)

    Article  Google Scholar 

  • M.R.D. Saint Vincent, R. Wunenburger, J.-P. Delville, Laser switching and sorting for high speed digital microfluidics. Appl. Phys. Lett. 92, 154105 (2008)

    Article  Google Scholar 

  • W.F. Sewell, J.T. Borenstein, Z. Chen, J. Fiering, O. Handzel, M. Holmboe, E.S. Kim, S.G. Kujawa, M.J. Mckenna, M.M. Mescher, Development of a microfluidics-based intracochlear drug delivery device. Audiol. Neuro Otol. 14, 411–422 (2009)

    Article  Google Scholar 

  • S.K. Sia, G.M. Whitesides, Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24, 3563–3576 (2003)

    Article  Google Scholar 

  • H.A. Stone, A.D. Stroock, A. Ajdari, Engineering flows in small devices: Microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381–411 (2004)

    Article  Google Scholar 

  • S.Y. Teh, R. Lin, L.H. Hung, A.P. Lee, Droplet microfluidics. Lab Chip 8, 198–220 (2008)

    Article  Google Scholar 

  • C.-H. Tsai, C.-H. Lin, L.-M. Fu, H.-C. Chen, High-performance microfluidic rectifier based on sudden expansion channel with embedded block structure. Biomicrofluidics 6, 024108 (2012)

    Article  Google Scholar 

  • T.-H. Wu, L. Gao, Y. Chen, K. Wei, P.-Y. Chiou, Pulsed laser triggered high speed microfluidic switch. Appl. Phys. Lett. 93, 144102 (2008)

    Article  Google Scholar 

  • Y. Xia, J. Si, Z. Li, Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: A review. Biosens. Bioelectron. 77, 774–789 (2016)

    Article  Google Scholar 

  • B. Ziaie, A. Baldi, M. Lei, Y.D. Gu, R.A. Siegel, Hard and soft micromachining for BioMEMS: Review of techniques and examples of applications in microfluidics and drug delivery. Adv. Drug Deliv. Rev. 56, 145–172 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

Y. Shi and C.F. Gao acknowledge the support from the National Natural Science Foundation of China (Grant No. 11702131 and 11472130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Wu, Q., Sun, D. et al. An analytic model of microfluidic system triggered by thermal expansion. Biomed Microdevices 21, 4 (2019). https://doi.org/10.1007/s10544-018-0351-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-018-0351-z

Keywords

Navigation