Skip to main content
Log in

A versatile and robust microfluidic device for capillary-sized simple or multiple emulsions production

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Ultrasound-vaporizable microdroplets can be exploited for targeted drug delivery. However, it requires customized microfluidic techniques able to produce monodisperse, capillary-sized and biocompatible multiple emulsions. Recent development of microfluidic devices led to the optimization of microdroplet production with high yields, low polydispersity and well-defined diameters. So far, only few were shown to be efficient for simple droplets or multiple emulsions production below 5 μm in diameter, which is required to prevent microembolism after intravenous injection. Here, we present a versatile microchip for both simple and multiple emulsion production. This parallelized system based on microchannel emulsification was designed to produce perfluorocarbon in water or water within perfluorocarbon in water emulsions with capillary sizes (<5 μm) and polydispersity index down to 5% for in vivo applications such as spatiotemporally-triggered drug delivery using Ultrasound. We show that droplet production at this scale is mainly controlled by interfacial tension forces, how capillary and viscosity ratios influence droplet characteristics and how different production regimes may take place. The better understanding of droplet formation and its relation to applied pressures is supported by observations with a high-speed camera. Compared to previous microchips, this device opens perspectives to produce injectable and biocompatible droplets with a reasonable yield in order to realize preclinical studies in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • G.H. Algire, J. Natl. Cancer Inst. 14, 865 (1954)

    Google Scholar 

  • E. Amstad, M. Chemama, M. Eggersdorfer, L.R. Arriaga, M.P. Brenner, D.A. Weitz, Lab Chip 16, 4163 (2016)

    Article  Google Scholar 

  • M. Bezagu, C. Errico, V. Chaulot-Talmon, F. Monti, M. Tanter, P. Tabeling, J. Cossy, S. Arseniyadis, O. Couture, J. Am. Chem. Soc. 136, 7205 (2014)

    Article  Google Scholar 

  • J.J. Choi, J.A. Feshitan, B. Baseri, S. Wang, Y.S. Tung, M.A. Borden, E.E. Konofagou, IEEE Trans. Biomed. Eng. 57, 145 (2010)

    Article  Google Scholar 

  • G.F. Christopher, S.L. Anna, J. Phys. D. Appl. Phys. 40, R319 (2007)

    Article  Google Scholar 

  • C. Cohen, R. Giles, V. Sergeyeva, N. Mittal, P. Tabeling, D. Zerrouki, J. Baudry, J. Bibette, N. Bremond, Microfluid. Nanofluid. 17, 959 (2014)

    Article  Google Scholar 

  • O. Couture, M. Faivre, N. Pannacci, A. Babataheri, V. Servois, P. Tabeling, M. Tanter, Med. Phys. 38, 1116 (2011)

    Article  Google Scholar 

  • O. Couture, A. Urban, A. Bretagne, L. Martinez, M. Tanter, P. Tabeling, Med. Phys. 39, 5229 (2012)

    Article  Google Scholar 

  • O. Couture, J. Foley, N.F. Kassell, B. Larrat, J.-F. Aubry, Transl. Cancer Res. 3, 494 (2014)

  • O. Couture, M. Tanter, C. Errico, Patent WO2017085373 A1 / PCT/FR2016052890. Method and device for producing emulsions. (2017)

  • R. Dangla, S. Cagri Kayi, C.N. Baroud, Proc. Natl. Acad. Sci. U. S. A. 110, 853 (2013)

    Article  Google Scholar 

  • A.J. De Mello, Nature 442, 394 (2006)

    Article  Google Scholar 

  • M.L. Fabiilli, J. Silpe, C. Rush, D. Lemmerhirt, E. Tang, G. Vasey, O.D. Kripfgans, Ultrasonics Symposium (IUS) IEEE International 1770 (2014)

  • S. Fokong, B. Theek, Z. Wu, P. Koczera, L. Appold, S. Jorge, U. Resch-Genger, M. van Zandvoort, G. Storm, F. Kiessling, T. Lammers, J. Control. Release 163, 75 (2012)

    Article  Google Scholar 

  • Z. Gao, H.D. Fain, N. Rapoport, Mol. Pharm. 1, 317 (2004)

    Article  Google Scholar 

  • V. Hingot, M. Bezagu, C. Errico, Y. Desailly, R. Bocheux, M. Tanter, O. Couture, Appl. Phys. Lett. 109, 194102 (2016)

    Article  Google Scholar 

  • D. Janasek, J. Franzke, A. Manz, Nature 442, 374 (2006)

    Article  Google Scholar 

  • T. Kawakatsu, G. Trägardh, C. Trägardh, Colloids Surf A: Physicochem. Eng. Aspects 189, 257 (2001)

    Article  Google Scholar 

  • I. Kobayashi, S. Mukataka, M. Nakajima, Langmuir 21, 7629 (2005)

    Article  Google Scholar 

  • I. Kobayashi, M.A. Neves, Y. Wada, K. Uemura, M. Nakajima, Green Process. Synth. 1, 353 (2012)

    Google Scholar 

  • S. Koster, F.E. Angilè, H. Duan, J.J. Agresti, A. Wintner, C. Schmitz, A.C. Rowat, C.A. Merten, D. Pisignano, A.D. Griffiths, D.A. Weitz, Lab Chip 8, 1110 (2008)

    Article  Google Scholar 

  • L. Landau, E. Davis, Lancet 269, 1327 (1957)

    Article  Google Scholar 

  • T.Y. Lee, T.M. Choi, T.S. Shim, R.A.M. Frijns, S.H. Kim, Lab Chip 16, 3415 (2016)

    Article  Google Scholar 

  • C.Y. Lin, W.G. Pitt, Biomed. Research International, 404361 (2013)

  • Q. Liu, S. Zhang, S. Shen, J. Yun, K. Yao, Chin. J. Chem. Eng. 19, 478 (2011)

    Article  Google Scholar 

  • T.D. Martz, P.S. Sheeran, D. Bardin, A.P. Lee, P.A. Dayton, Ultrasound Med. Biol. 37, 1952 (2011)

    Article  Google Scholar 

  • J.J. Nichols, P.E. King-Smith, E.A. Hinel, M. Thangavelu, K.K. Nichols, Invest. Ophtalmol. Vis. Sci. 53, 5426 (2012)

    Article  Google Scholar 

  • K. Park, J. Control. Release 236, 117 (2016)

    Article  Google Scholar 

  • L. Shang, Y. Cheng, Y. Zhao, Chem. Rev. 17, 7964 (2017)

    Article  Google Scholar 

  • P.S. Sheeran, P.A. Dayton, Scientifica, 579684 (2014)

  • L. Shui, A. van den Berg, J.C.T. Eijkel, Microfluid. Nanofluid. 11, 87 (2011)

    Article  Google Scholar 

  • H. Song, D.L. Chen, R.F. Ismagilov, Angew. Chem. Int. Ed. 45, 7336 (2006)

    Article  Google Scholar 

  • P.C. Sontum, S. Kvale, A.J. Healey, R. Skurtveit, R. Watanabe, M. Matsumura, J. Ostensen, Int. J. Pharm. 495, 1019 (2015)

    Article  Google Scholar 

  • E. Stolovicki, R. Ziblat, D.A. Weitz, Lab Chip 18, 132 (2018)

    Article  Google Scholar 

  • S. Sugiura, M. Nakajima, J. Tong, H. Nabetani, M. Seki, J. Colloid Interface Sci. 227, 95 (2000)

    Article  Google Scholar 

  • S. Sugiura, M. Nakajima, S. Iwamoto, M. Seki, Langmuir 17, 5562 (2001)

    Article  Google Scholar 

  • S. Sugiura, M. Nakajima, M. Seki, Langmuir 18, 3854 (2002a)

    Article  Google Scholar 

  • S. Sugiura, M. Nakajima, M. Seki, Langmuir 18, 5708 (2002b)

    Article  Google Scholar 

  • S. Sugiura, M. Nakajima, N. Kumazawa, S. Iwamoto, M. Seki, J. Phys. Chem. B 106, 9405 (2002c)

    Article  Google Scholar 

  • R. Suzuki, T. Takizawa, Y. Negishi, K. Hagisawa, K. Tanaka, K. Sawamura, N. Utoguchi, T. Nishioka, K. Maruyama, J. Control. Release 117, 130 (2007)

    Article  Google Scholar 

  • K. Takamura, K. Fischer, N.R. Morrow, J. Pet. Sci. Eng. 98-99, 50 (2012)

    Article  Google Scholar 

  • A.S. Utada, E. Lorenceau, D.R. Link, P.D. Kaplan, H.A. Stone, D.A. Weitz, Science 308, 537 (2005)

    Article  Google Scholar 

  • K. van Dijke, I. Kobayashi, K. Schroën, K. Uemura, M. Nakajima, R. Boom, Microfluid. Nanofluid. 9, 77 (2010)

    Article  Google Scholar 

  • A. van Wamel, A.J. Healey, P.C. Sontum, S. Kvale, N. Bush, J. Bamber, C. de Lange Davies, J. Control. Release 224, 158 (2016a)

    Article  Google Scholar 

  • A. van Wamel, P.C. Sontum, A.J. Healey, S. Kvale, N. Bush, J. Bamber, C. de Lange Davies, J. Control. Release 236, 15 (2016b)

    Article  Google Scholar 

  • G.T. Vladisavljevic, I. Kobayashi, M. Nakajima, Microfluid. Nanofluid. 10, 1199 (2011)

    Article  Google Scholar 

  • K. Wang, Y.C. Lu, J.H. Xu, G.S. Luo, Langmuir 25, 2153 (2009)

    Article  Google Scholar 

  • M.P. Wiedeman, Circ. Res. 12, 375 (1963)

    Article  Google Scholar 

  • X. Xiaonan, R. Song, M. He, C. Peng, M. Yu, Y. Hou, H. Qiu, R. Zou, S. Yao, Lab Chip 17, 3504 (2017)

    Article  Google Scholar 

  • P. Zhu, L. Wang, Lab Chip 17, 34 (2017)

    Article  Google Scholar 

  • B.W. Zweifach, C. Kossmann, Am. J. Phys. 120, 23 (1937)

    Google Scholar 

Download references

Acknowledgements

This work was supported principally by Plan Cancer, project UICT. This work was also supported by LABEX WIFI (ANR-10-LABX-24) within the French Program “Investments for the Future” under reference ANR-10-IDEX-0001-02-PSL*. The authors warmly thank Baptiste Heiles, Charlotte Constans and Jean-Marie Chassot (Institut Langevin) for their helpful advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Teston.

Ethics declarations

Conflict of interest

MT, CE and OC hold a patent on a parallelized microfluidics droplet production device (PCT/FR2016052890).

Electronic supplementary material

ESM 1

(DOCX 11013 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teston, E., Hingot, V., Faugeras, V. et al. A versatile and robust microfluidic device for capillary-sized simple or multiple emulsions production. Biomed Microdevices 20, 94 (2018). https://doi.org/10.1007/s10544-018-0340-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-018-0340-2

Keywords

Navigation