Skip to main content
Log in

Porous silicon-poly(ε-caprolactone) film composites: evaluation of drug release and degradation behavior

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This work focuses on an evaluation of novel composites of porous silicon (pSi) with the biocompatible polymer ε-polycaprolactone (PCL) for drug delivery and tissue engineering applications. The degradation behavior of the composites in terms of their morphology along with the effect of pSi on polymer degradation was monitored. PSi particles loaded with the drug camptothecin (CPT) were physically embedded into PCL films formed from electrospun PCL fiber sheets. PSi/PCL composites revealed a release profile of CPT (monitored via fluorescence spectroscopy) in accordance with the Higuchi release model, with significantly lower burst release percentage compared to pSi microparticles alone. Degradation studies of the composites, using gravimetric analysis, differential scanning calorimetry (DSC), and field emission scanning electron microscopy (FESEM), carried out in phosphate-buffered saline (PBS) under simulated physiological conditions, indicated a modest mass loss (15%) over 5 weeks due to pSi dissolution and minor polymer hydrolysis. DSC results showed that, relative to PCL-only controls, pSi suppressed crystallization of the polymer film during PBS exposure. This suppression affects the evolution of surface morphology during this exposure that, in turn, influences the degradation behavior of the polymer. The implications of the above properties of these composites as a possible therapeutic device are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • S.A.M. Ali, S.P. Zhong, P.J. Doherty, D.F. Williams, Biomaterials 14, 648–656 (1993)

    Article  Google Scholar 

  • S.H.C. Anderson, H. Elliott, D.J. Wallis, L.T. Canham, J.J. Powell, Phys. Status Solidi A 197, 331–335 (2003)

    Article  Google Scholar 

  • L.M. Bimbo, E. Makila, T. Laaksonen, V.P. Lehto, J. Salonen, J. Hirvonen, H.A. Santos, Biomaterials 32, 2625–2633 (2011)

    Article  Google Scholar 

  • L.T. Canham, Adv. Mater. 7, 1033–1037 (1995)

    Article  Google Scholar 

  • I. Castilla-Cortazar, J. Mas-Estelles, J.M. Meseguer-Duenas, J.L.E. Ivirico, B. Mari, A. Vidaurre, Polym. Degrad. Stab. 97, 1241–1248 (2012)

    Article  Google Scholar 

  • D.Y. Chan, A.G. Sega, J.Y. Lee, T. Gao, F. Cunin, F. Di Renzo, M.J. Sailor, Inorg. Chim. Acta 422, 21–29 (2014)

    Article  Google Scholar 

  • C. Chiappini, X.W. Liu, J.R. Fakhoury, M. Ferrari, Adv. Funct. Mater. 20, 2231–2239 (2010)

    Article  Google Scholar 

  • P. Costa, J. Manuel, S. Lobo, Eur. J. Pharm. Sci. 13, 123–133 (2001)

    Article  Google Scholar 

  • V. Crescenzi, G. Manzini, G. Calzolari, C. Borri, Eur. Polym. J. 8, 449–463 (1972)

    Article  Google Scholar 

  • G.W. Ehrenstein, in Polymeric Materials: Structure-Properties-Applications, ed. by G.W. Ehrenstein (Hanser, Munich, 2001), p. 167–209

  • D.M. Fan, A. Loni, L.T. Canham, J.L. Coffer, Phys. Status Solidi A 206, 1322–1325 (2009)

    Article  Google Scholar 

  • D.M. Fan, G.R. Akkaraju, E.F. Couch, L.T. Canham, J.L. Coffer, Nanoscale 3, 354–361 (2011)

    Article  Google Scholar 

  • D.M. Fan, E. De Rosa, M.B. Murphy, Y. Peng, C.A. Smid, C. Chiappini, X.W. Liu, P. Simmons, B.K. Weiner, M. Ferrari, E. Tasciotti, Adv. Funct. Mater. 22, 282–293 (2012)

    Article  Google Scholar 

  • N. Ganesh, R. Jayakumar, M. Koyakutty, U. Mony, S.V. Nair, Tissue Eng. Part A 18, 1867–1881 (2012)

    Article  Google Scholar 

  • T. Higuchi, J. Pharm. Sci. 50, 874–875 (1961)

    Article  Google Scholar 

  • T. Higuchi, J. Pharm. Sci. 52, 1145–1149 (1963)

    Article  Google Scholar 

  • A.W. Hixson, J.H. Crowell, Ind. Eng. Chem. 23, 1002–1009 (1931)

    Article  Google Scholar 

  • Y.D. Irani, Y. Tian, M.J. Wang, S. Klebe, S.J. McInnes, N.H. Voelcker, J.L. Coffer, K.A. Williams, Exp. Eye Res. 139, 123–131 (2015)

    Article  Google Scholar 

  • S. Kashanian, F. Harding, Y. Irani, S. Klebe, K. Marshall, A. Loni, L. Canham, D.M. Fan, K.A. Williams, N.H. Voelcker, J.L. Coffer, Acta Biomater. 6, 3566–3572 (2010)

    Article  Google Scholar 

  • M. Labet, W. Thielemans, Chem. Soc. Rev. 38, 3484–3504 (2009)

    Article  Google Scholar 

  • A. Loni, T. Defforge, E. Caffull, G. Gautier, L.T. Canham, Microporous Mesoporous Mater. 213, 188–191 (2015)

    Article  Google Scholar 

  • N. Massad-Ivanir, Y. Mirsky, A. Nahor, E. Edrei, L.M. Bonanno-Young, N. Ben Dov, A. Sa'ar, E. Segal, Analyst 139, 3885–3894 (2014)

    Article  Google Scholar 

  • S.J.P. McInnes, Y. Irani, K.A. Williams, N.H. Voelcker, Nanomedicine-UK 7, 995–1016 (2012)

    Article  Google Scholar 

  • M. Mehrasa, M.A. Asadollahi, B. Nasri-Nasrabadi, K. Ghaedi, H. Salehi, A. Dolatshahi-Pirouz, A. Arpanaei, Mat. Sci. Eng. C Mater. 66, 25–32 (2016)

    Article  Google Scholar 

  • J.M. Meseguer-Duenas, J. Mas-Estelles, I. Castilla-Cortazar, J.L.E. Ivirico, A. Vidaurre, J. Mater. Sci. Mater. Med. 22, 11–18 (2011)

    Article  Google Scholar 

  • P. Mukherjee, M.A. Whitehead, R.A. Senter, D.M. Fan, J.L. Coffer, L.T. Canham, Biomed. Microdevices 8, 9–15 (2006)

    Article  Google Scholar 

  • H. Ouyang, M. Christophersen, P.M. Fauchet, Phys. Status Solidi A 202, 1396–1401 (2005)

    Article  Google Scholar 

  • C. Pacholski, Sensors (Basel) 13, 4694–4713 (2013)

    Article  Google Scholar 

  • C.G. Pitt, F.I. Chasalow, Y.M. Hibionada, D.M. Klimas, A. Schindler, Appl. Polym. Sci. 26, 3779–3787 (1981)

    Article  Google Scholar 

  • G. Rong, A. Najmaie, J.E. Sipe, S.M. Weiss, Biosens. Bioelectron. 23, 1572–1576 (2008)

    Article  Google Scholar 

  • M.J. Sailor, in Handbook of Porous Silicon, ed. by L.T. Canham, (Springer, New York, 2014), p. 355–380

  • J. P. Vacanti, C.A. Vacanti, in Principles of Tissue Engineering, ed. by R. Lanza, R. Langer, (Elsevier Science, Amsterdam, 2013), p. 3–9

  • M.E. Wall, M.C. Wani, C.E. Cook, K.H. Palmer, A.T. Mcphail, G.A. Sim, J. Am, Chem. Soc. 88, 3888–3890 (1966)

    Article  Google Scholar 

  • M.J. Wang, P.S. Hartman, A. Loni, L.T. Canham, N. Bodiford, J.L. Coffer, Langmuir 31, 6179–6185 (2015a)

    Article  Google Scholar 

  • C.F. Wang, M.P. Sarparanta, E.M. Makila, M.L.K. Hyvonen, P.M. Laakkonen, J.J. Salonen, J.T. Hirvonen, A.J. Airaksinen, H.A. Santos, Biomaterials 48, 108–118 (2015b)

    Article  Google Scholar 

  • M.A. Whitehead, D. Fan, G.R. Akkaraju, L.T. Canham, J.L. Coffer, J. Biomed. Mater. Res. A 83a, 225–234 (2007)

    Article  Google Scholar 

  • M.A. Whitehead, D. Fan, P. Mukherjee, G.R. Akkaraju, L.T. Canham, J.L. Coffer, Tissue Eng. Part A 14, 195–206 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support of this research by the Robert A. Welch Foundation is gratefully acknowledged (Grant P-1212). This work was performed in part at the Melbourne Centre for Nanofabrication (MCN) in the Victorian Node of the Australian National Fabrication Facility (ANFF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffery L. Coffer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bodiford, N.K., McInnes, S.J.P., Voelcker, N.H. et al. Porous silicon-poly(ε-caprolactone) film composites: evaluation of drug release and degradation behavior. Biomed Microdevices 20, 71 (2018). https://doi.org/10.1007/s10544-018-0313-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-018-0313-5

Keywords

Navigation