Skip to main content

Advertisement

Log in

3D printing for preoperative planning and surgical training: a review

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Surgeons typically rely on their past training and experiences as well as visual aids from medical imaging techniques such as magnetic resonance imaging (MRI) or computed tomography (CT) for the planning of surgical processes. Often, due to the anatomical complexity of the surgery site, two dimensional or virtual images are not sufficient to successfully convey the structural details. For such scenarios, a 3D printed model of the patient’s anatomy enables personalized preoperative planning. This paper reviews critical aspects of 3D printing for preoperative planning and surgical training, starting with an overview of the process-flow and 3D printing techniques, followed by their applications spanning across multiple organ systems in the human body. State of the art in these technologies are described along with a discussion of current limitations and future opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • P. Abdel-Sayed, L. Von Segesser, in Adv. Appl. Rapid Prototyp. Technol. Mod. Eng.. Rapid prototyping for training purposes in cardiovascular surgery (2011)

    Google Scholar 

  • P. Abdel-Sayed, M. Kalejs, L.K. von Segesser, A new training set-up for trans-apical aortic valve replacement. Interact. Cardiovasc. Thorac. Surg. 8, 599–601 (2009)

    Google Scholar 

  • N. Adolphs, W. Liu, E. Keeve, B. Hoffmeister, Craniomaxillofacial surgery planning based on 3D models derived from Cone-Beam CT data. Comput. Aided Surg. 18(5–6), 101–108 (2013)

    Google Scholar 

  • D.-G. Ahn, J.-Y. Lee, D.-Y. Yang, Rapid prototyping and reverse engineering application for orthopodeic surgery planning. J. Mech. Sci. Technol. 20(1), 19–28 (2006)

    Google Scholar 

  • M. Akaike et al., Simulation-based medical education in clinical skills laboratory. J. Med. Invest. 59(1, 2), 28–35 (2012)

    Google Scholar 

  • O. Al-Mefty, J.L. Fox, A. Rifai, R.R. Smith, A combined infratemporal and posterior fossa approach for the removal of giant glomus tumors and chondrosarcomas. Surg. Neurol. 28(6), 423–431 (Dec. 1987)

    Google Scholar 

  • T. Andrew and H. Piggott, Growth arrest for progressive scoliosis. Combined anterior and posterior fusion of the convexity. J. Bone Jt. Surg. …, (1985)

  • E. Angeli, D. Pacini, S. Martin-Suarez, A. Dell’Amore, R. Fattori, R. Di Bartolomeo, Stent repair of aortic perianastomotic leak after aortic arch and descending aorta replacement. Ital. Heart J. Off. J. Ital. Fed. Cardiol. 5(12), 951–953 (Dec. 2004)

    Google Scholar 

  • D. Bakhos, S. Velut, A. Robier, M. Al Zahrani, E. Lescanne, Three-dimensional modeling of the temporal bone for surgical training. Otol. Neurotol. Off. Publ. Am. Otol. Soc. Am. Neurotol. Soc. Eur. Acad. Otol. Neurotol., 328–334 (2009)

    Google Scholar 

  • E. Berry et al., Preliminary experience with medical applications of rapid prototyping by selective laser sintering. Med. Eng. Phys. 19(1), 90–96 (1997)

    Google Scholar 

  • E. Berry, A. Marsden, K.W. Dalgarno, D. Kessel, D.J. Scott, Flexible tubular replicas of abdominal aortic aneurysms. Proc. Inst. Mech. Eng. H J. Eng. Med. 216(3), 211–214 (2002)

    Google Scholar 

  • Bertalanffy, The dorsolateral, suboccipital, transcondylar approach to the lower clivus and anterior portion of the craniocervical junction. Neurosurgery 29(6), 815–821 (1991)

    Google Scholar 

  • J.S. Bill et al., Stereolithography in oral and maxillofacial operation planning. Int. J. Oral Maxillofac. Surg. 24(1), 98–103 (Feb. 1995)

    Google Scholar 

  • G.A. Brown, K. Firoozbakhsh, T. a DeCoster, J.R. Reyna, M. Moneim, Rapid prototyping: the future of trauma surgery? J. Bone Joint Surg. Am. 85(A Suppl), 49–55 (2003)

    Google Scholar 

  • R. Bryan, J. Rand, Revision total knee arthroplasty (Clin. Orthop, 1982)

  • S. Bustamante, S. Bose, P. Bishop, R. Klatte, F. Norris, Novel application of rapid prototyping for simulation of bronchoscopic anatomy. J. Cardiothorac. Vasc. Anesth. 28(4), 1134–1137 (2014)

    Google Scholar 

  • R.M. Carr, R.H. Mathog, Early and delayed repair of orbitozygomatic complex fractures. J. Oral Maxillofac. Surg. 55(3), 253–258 (Mar. 1997)

    Google Scholar 

  • V. Chan, P. Zorlutuna, J.H. Jeong, H. Kong, R. Bashir, Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation. Lab. Chip 10(16), 2062–2070 (Aug. 2010)

    Google Scholar 

  • C.L. Cheung, T. Looi, T.S. Lendvay, J.M. Drake, W.a. Farhat, Use of 3-dimensional printing technology and silicone modeling in surgical simulation: Development and face validation in pediatric laparoscopic pyeloplasty. J. Surg. Educ. 71(5), 762–767 (2014)

    Google Scholar 

  • C. K. Chong, J. Brennan, T. V How, R. Edwards, G. L. Gilling-Smith, and P. L. Harris, “A prototype simulator for endovascular repair of abdominal aortic aneurysms.,” Eur. J. Vasc. Endovasc. Surg. Off. J. Eur. Soc. Vasc. Surg., vol. 13, no. 3, pp. 330–333, 1997.

    Google Scholar 

  • A. Cohen, A. Laviv, P. Berman, R. Nashef, J. Abu-Tair, Mandibular reconstruction using stereolithographic 3-dimensional printing modeling technology. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology 108(5), 661–666 (2009)

    Google Scholar 

  • J.J. Collins, S.F. Aranki, Management of mild aortic stenosis during coronary artery bypass graft surgery. J. Card. Surg. 9(s2), 145–147 (Mar. 1994)

    Google Scholar 

  • J.P. Costello et al., Utilizing three-dimensional printing technology to assess the feasibility of high-fidelity synthetic ventricular septal defect models for simulation in medical education. World J. Pediatr. Congenit. Heart Surg. 5(3), 421–426 (2014)

    Google Scholar 

  • J.P. Costello et al., Incorporating three-dimensional printing into a simulation-based congenital heart disease and critical care training curriculum for resident physicians. Congenit Heart Dis 10(2), 185–190 (2015)

    Google Scholar 

  • J. Cui, L. Chen, X. Guan, L. Ye, H. Wang, L. Liu, Surgical planning, three-dimensional model surgery and preshaped implants in treatment of bilateral craniomaxillofacial post-traumatic deformities. J. Oral Maxillofac. Surg. 72(6), 1138.e1–1138.e14 (2014)

    Google Scholar 

  • L.L. Cunningham, M.J. Madsen, G. Peterson, Stereolithographic modeling technology applied to tumor resection. J. Oral Maxillofac. Surg. 63(6), 873–878 (2005)

    Google Scholar 

  • P.S. D’Urso et al., Stereolithographic (SL) biomodelling in craniofacial surgery. Br. J. Plast. Surg. 51(7), 522–530 (Oct. 1998)

    Google Scholar 

  • P.S. D’Urso et al., Custom cranioplasty using stereolithography and acrylic. Br. J. Plast. Surg. 53(3), 200–204 (Apr. 2000)

    Google Scholar 

  • E. Debarre, P. Hivart, D. Baranski, P. Déprez, Speedy skeletal prototype production to help diagnosis in orthopaedic and trauma surgery. Methodology and examples of clinical applications. Orthop. Traumatol. Surg. Res. 98(5), 597–602 (2012)

    Google Scholar 

  • R. Dhakshyani, Y. Nukman, N.A.A. Osman, A.M. Merican, J. George, Rapid prototyping medical models for dysplastic hip orthopaedic surgery. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 224(5), 769–776 (2010)

    Google Scholar 

  • R. Dhakshyani, Y. Nukman, N.A. Abu Osman, Rapid prototyping models for dysplastic hip surgeries in Malaysia. Eur. J. Orthop. Surg. Traumatol. 22(1), 41–46 (2012)

    Google Scholar 

  • B.O. Erbano et al., Rapid prototyping of three-dimensional biomodels as an adjuvant in the surgical planning for intracranial aneurysms. Acta Cirúrgica Bras. Soc. Bras. Para Desenvolv. Pesqui. Em Cir. 28(11), 756–761 (2013)

    Google Scholar 

  • X. Fan, H. Zhou, M. Lin, Y. Fu, J. Li, Late reconstruction of the complex orbital fractures with computer-aided design and computer-aided manufacturing technique. J. Craniofac. Surg. 18(3), 665–673 (2007)

    Google Scholar 

  • M. Farina, J.F. Alexander, U. Thekkedath, M. Ferrari, A. Grattoni, Cell encapsulation: Overcoming barriers in cell transplantation in diabetes and beyond. Adv. Drug Deliv. Rev. (2018)

  • S.F. Fighali et al., Early and late mortality of patients undergoing aortic valve replacement after previous coronary artery bypass graft surgery. Circulation 92(9), 163–168 (Nov. 1995)

    Google Scholar 

  • U. Fisch, The infratemporal approach to glomus jugulare tumors. Neurochirurgie. 31(5), 367–376 (Jan. 1985)

    Google Scholar 

  • D.H. Frakes, M.J.T. Smith, J. Parks, S. Sharma, S.M. Fogel, A.P. Yoganathan, New techniques for the reconstruction of complex vascular anatomies from MRI images. J. Cardiovasc. Magn. Reson. Off. J. Soc. Cardiovasc. Magn. Reson. 7(2), 425–432 (2005)

    Google Scholar 

  • M. Frame, J.S. Huntley, Rapid prototyping in orthopaedic surgery: a user’s guide. ScientificWorldJournal 2012, 838575 (2012)

    Google Scholar 

  • K. Futami, M. Nakada, M. Iwato, D. Kita, T. Miyamori, J. Yamashita, Simulation of clipping position for cerebral aneurysms using three-dimensional computed tomography angiography. Neurol. Med. Chir. (Tokyo) 44(1), 6–13 (Mar. 2004)

    Google Scholar 

  • J. Gateno, M.E. Allen, J.F. Teichgraeber, M.L. Messersmith, An in vitro study of the accuracy of a new protocol for planning distraction osteogenesis of the mandible. J. Oral Maxillofac. Surg. Off. J. Am. Assoc. Oral Maxillofac. Surg. 58(9), 985–990; discussion 990–1 (2000)

    Google Scholar 

  • J. Geerts et al., Functional magnetic resonance imaging for preoperative localisation of eloquent brain areas relative to brain tumours: clinical implementation in a regional hospital. JBR-BTR Organe Société R. Belge Radiol. SRBR Orgaan Van K. Belg. Ver. Voor Radiol. KBVR 90(4), 258–263 (Jan. 2007)

    Google Scholar 

  • K.K. Gnanalingham, V. Apostolopoulos, S. Barazi, K. O’Neill, The impact of the international subarachnoid aneurysm trial (ISAT) on the management of aneurysmal subarachnoid haemorrhage in a neurosurgical unit in the UK. Clin. Neurol. Neurosurg. 108(2), 117–123 (Feb. 2006)

    Google Scholar 

  • G.F. Greil et al., Stereolithographic reproduction of complex cardiac morphology based on high spatial resolution imaging. Clin. Res. Cardiol. 96, 176–185 (2007)

    Google Scholar 

  • J. Guarino, S. Tennyson, G. McCain, L. Bond, K. Shea, H. King, Rapid prototyping technology for surgeries of the pediatric spine and pelvis: benefits analysis. J. Pediatr. Orthop. 27(8), 955–960 (2007)

    Google Scholar 

  • H.K. Hahn, W.S. Millar, O. Klinghammer, M.S. Durkin, P.K. Tulipano, H.-O. Peitgen, A reliable and efficient method for cerebral ventricular volumetry in pediatric neuroimaging. Methods Arch. 43(4), 376–382 (2004)

    Google Scholar 

  • H.M. Hidalgo, G.W. Romo, R.T.R. Estolano, Stereolithography: a method for planning the surgical correction of the hypertelorism. J. Craniofac. Surg., vol. 5, 20 (2009)

    Google Scholar 

  • J. Hirsch et al., An integrated functional magnetic resonance imaging procedure for preoperative mapping of cortical aread associated with tactile, motor, language, and visual functions. Neurosurgery 47(3), 711–722 (2000)

    Google Scholar 

  • J.I.. Hoffman, S. Kaplan, The incidence of congenital heart disease. J. Am. Coll. Cardiol. 39(12), 1890–1900 (Jun. 2002)

    Google Scholar 

  • D.E. Holck, E.M. Boyd, J. Ng, R.O. Mauffray, Benefits of stereolithography in orbital reconstruction. Ophthalmology 106(6), 1214–1218 (1999)

    Google Scholar 

  • C. Hurson, B.O.’.D. a Tansey, P. Nicholson, J. Rice, J. McElwain, Rapid prototyping in the assessment, classification and preoperative planning of acetabular fractures. Injury 38(10), 1158–1162 (2007)

    Google Scholar 

  • S. Jacobs, R. Grunert, F.W. Mohr, V. Falk, 3D-Imaging of cardiac structures using 3D heart models for planning in heart surgery: a preliminary study. Interact. Cardiovasc. Thorac. Surg. 7(1), 6–9 (2008)

    Google Scholar 

  • A.D. Jatene, Left ventricular aneurysmectomy. Resection or reconstruction. J. Thorac. Cardiovasc. Surg. 89(3), 321–331 (Mar. 1985)

    Google Scholar 

  • J.F. John, R.E. Talbert, J.K. Taylor, W.L. Bargar, Use of acetabular models in planning complex acetabular reconstructions. J. Arthroplasty 10(5), 661–666 (Oct. 1995)

    Google Scholar 

  • M. Kalejs, L.K. von Segesser, Rapid prototyping of compliant human aortic roots for assessment of valved stents. Interact. Cardiovasc. Thorac. Surg. 8, 182–186 (2009)

    Google Scholar 

  • T. Kaminaga, T. Takeshita, I. Kimura, Role of magnetic resonance imaging for evaluation of tumors in the cardiac region. Eur. Radiol., vol. 13 Suppl 6, L1–L10 (Dec. 2003)

    Google Scholar 

  • B. Kavanagh, Cemented revision hip arthroplasty: results, Jt. Replace. Arthroplasty N. Y. Etc Churchill … 1991 Paperpile.

  • C.J. Kellenberger, S.-J. Yoo, E.R.V. Büchel, Cardiovascular MR imaging in neonates and infants with congenital heart disease. Radiogr. Rev. Publ. Radiol. Soc. N. Am. Inc 27(1), 5–18 (2007)

    Google Scholar 

  • C. Kermer, a. Lindner, I. Friede, a. Wagner, W. Millesi, Preoperative stereolithographic model planning for primary reconstruction in craniomaxillofacial trauma surgery. J. Craniomaxillofac. Surg. 26(3), 136–139 (1998)

    Google Scholar 

  • J. Kettenbach et al., Computer-based imaging and interventional MRI: applications for neurosurgery. Comput. Med. Imaging Graph. 23(5), 245–258 (1999)

    Google Scholar 

  • M.S. Kim, A.R. Hansgen, O. Wink, R.A. Quaife, J.D. Carroll, Rapid prototyping: a new tool in understanding and treating structural heart disease. Circulation 117(18), 2388–2394 (2008)

    Google Scholar 

  • T. Kimura et al., Simulation of and training for cerebral aneurysm clipping with 3-dimensional models. Neurosurgery 65(4), 719–726 (2009)

    Google Scholar 

  • K. Knox, C.W. Kerber, S. a Singel, M.J. Bailey, S.G. Imbesi, Rapid prototyping to create vascular replicas from CT scan data: making tools to teach, rehearse, and choose treatment strategies. Catheter. Cardiovasc. Interv. Off. J. Soc. Card. Angiogr. Interv. 65(1), 47–53 (2005)

    Google Scholar 

  • M. Kozakiewicz et al., Clinical application of 3D pre-bent titanium implants for orbital floor fractures. J. Cranio-Maxillofac. Surg. 37(4), 229–234 (2009)

    Google Scholar 

  • J.P. Kruth, Material incress manufacturing by rapid prototyping techniques. CIRP Ann. - Manuf. Technol. 40(2), 603–614 (1991)

    Google Scholar 

  • P. Lachiewicz and O. Hussamy, Revision of the acetabulum without cement with use of the Harris-Galante porous-coated implant. Two to eight-year results. J. Bone Jt. Surg., (1994)

  • R. Lazar and J. Hall, Simultaneous anterior and posterior hemivertebra excision. Clin. Orthop., (1999)

  • G.M. Lemole, P.P. Banerjee, C. Luciano, S. Neckrysh, F.T. Charbel, Virtual reality in neurosurgical education. Neurosurgery 61(1), 142–149 (2007)

    Google Scholar 

  • E.A. Longfield, T.M. Brickman, A. Jeyakumar, 3D printed pediatric temporal bone: a novel training model. Otol Neurotol, 793–795 (2015)

    Google Scholar 

  • E. Maravelakis, K. David, A. Antoniadis, A. Manios, N. Bilalis, Y. Papaharilaou, Reverse engineering techniques for cranioplasty: a case study. J. Med. Eng. Technol. 32(2), 115–121 (2008)

    Google Scholar 

  • T. Mashiko et al., Development of three-dimensional hollow elastic model for cerebral aneurysm clipping simulation enabling rapid and low cost prototyping. World Neurosurg 83(3), 351–361 (2015)

    Google Scholar 

  • B. Mavčič, B. Pompe, and V. Antolič, Mathematical estimation of stress distribution in normal and dysplastic human hips, J. …, (2002)

  • M. McGurk, A.A. Amis, P. Potamianos, N.M. Goodger, Rapid prototyping techniques for anatomical modelling in medicine. Ann. R. Coll. Surg. Engl. 79(3), 169–174 (May 1997)

    Google Scholar 

  • S. Mohammadi et al., Reoperation for false aneurysm of the ascending aorta after its prosthetic replacement: surgical strategy. Ann. Thorac. Surg. 79(1), 147–152; discussion 152 (Jan. 2005)

    Google Scholar 

  • K. Mori, T. Yamamoto, K. Oyama, H. Ueno, Y. Nakao, K. Honma, Modified three-dimensional skull base model with artificial dura mater, cranial nerves, and venous sinuses for training in skull base surgery: technical note. Neurol. Med. Chir. (Tokyo) 48(12), 582–587; discussion 587–588 (2008)

    Google Scholar 

  • L. Moroni et al., Biofabrication strategies for 3D in vitro models and regenerative medicine, Nature Reviews Materials. 3(5), 21–37, (2018)

    Google Scholar 

  • S. Mottl-Link et al., Physical models aiding in complex congenital heart surgery. Ann. Thorac. Surg. 86(1), 273–277 (2008)

    Google Scholar 

  • B. Mueller, D. Kochan, Laminated object manufacturing for rapid tooling and patternmaking in foundry industry. Comput. Ind. 39(1), 47–53 (1999)

    Google Scholar 

  • A. Müller, K.G. Krishnan, E. Uhl, G. Mast, The application of rapid prototyping techniques in cranial reconstruction and preoperative planning in neurosurgery. J. Craniofac. Surg. 14, 899–914 (2003)

    Google Scholar 

  • M.C. Murphy et al., Surgical treatment of cardiac tumors: A 25-year experience☆. Ann. Thorac. Surg. 49(4), 612–618 (Apr. 1990)

    Google Scholar 

  • S.F. Mustafa, P.L. Evans, A. Bocca, D.W. Patton, A.W. Sugar, P.W. Baxter, Customized titanium reconstruction of post-traumatic orbital wall defects: a review of 22 cases. Int. J. Oral Maxillofac. Surg. 40(12), 1357–1362 (2011)

    Google Scholar 

  • E.M. Ngan et al., The rapid prototyping of anatomic models in pulmonary atresia. J. Thorac. Cardiovasc. Surg. 132(2), 264–269 (2006)

    Google Scholar 

  • A.M. Noecker et al., Development of patient-specific three-dimensional pediatric cardiac models. ASAIO J. 52(3), 349–353 (2006)

    Google Scholar 

  • M.K. O’Reilly et al., Fabrication and assessment of 3D printed anatomical models of the lower limb for anatomical teaching and femoral vessel access training in medicine. Anat. Sci. Educ. 00(2010), 1–9 (2015)

    Google Scholar 

  • J.A. Odell, C.J. Mullany, H.V. Schaff, T.A. Orszulak, R.C. Daly, J.J. Morris, Aortic valve replacement after previous coronary artery bypass grafting. Ann. Thorac. Surg. 62(5), 1424–1430 (Nov. 1996)

    Google Scholar 

  • M. Oishi, M. Fukuda, N. Yajima, and K. Yoshida, Interactive presurgical simulation applying advanced 3D imaging and modeling techniques for skull base and deep tumors: Clinical article, J. Of, (2013).

  • M. Oliveira et al., 3-D biomodelling technology for maxillofacial reconstruction. Mater. Sci. Eng. C 28(8), 1347–1351 (2008)

    Google Scholar 

  • L.J. Olivieri, A. Krieger, Y.-H. Loke, D.S. Nath, P.C.W. Kim, C.A. Sable, Three-dimensional printing of intracardiac defects from three-dimensional echocardiographic images: feasibility and relative accuracy. J. Am. Soc. Echocardiogr. 28(4), 392–397 (2015)

    Google Scholar 

  • J.M. Otton et al., Left atrial appendage closure guided by personalized 3d-printed cardiac reconstruction. JACC Cardiovasc. Interv. 8(7), 1004–1006 (2015)

    Google Scholar 

  • P. Ou, D.S. Celermajer, G. Calcagni, F. Brunelle, D. Bonnet, D. Sidi, Three-dimensional CT scanning: a new diagnostic modality in congenital heart disease. Heart 93(8), 908–913 (2007)

    Google Scholar 

  • S.W. Park, J.W. Choi, K.S. Koh, T.S. Oh, Mirror-imaged rapid prototype skull model and pre-molded synthetic scaffold to achieve optimal orbital cavity reconstruction. J. Oral Maxillofac. Surg. Off. J. Am. Assoc. Oral Maxillofac. Surg., 1540–1553 (2015)

    Google Scholar 

  • J.Y. Park, G. Gao, J. Jang, D.-W. Cho, 3D printed structures for delivery of biomolecules and cells: tissue repair and regeneration. J. Mater. Chem. B 4(47), 7521–7539 (2016)

    Google Scholar 

  • B.C. Patel, J. Hoffmann, Management of complex orbital fractures. Facial Plast. Surg. FPS 14(1), 83–104 (Jan. 1998)

    Google Scholar 

  • M. Perry, P. Banks, R. Richards, E.P. Friedman, P. Shaw, The use of computer-generated three-dimensional models in orbital reconstruction. Br. J. Oral Maxillofac. Surg. 36(4), 275–284 (1998)

    Google Scholar 

  • P. Potamianos, A.A. Amis, A.J. Forester, M. Mcgurk, M. Bircher, Rapid prototyping for orthopaedic surgery. Proc Inst Mech Eng Part H 212, 383–393 (2015)

    Google Scholar 

  • M. Poulsen, C. Lindsay, T. Sullivan, P. D’Urso, Stereolithographic modelling as an aid to orbital brachytherapy. Int. J. Radiat. Oncol. Biol. Phys. 44(3), 731–735 (1999)

    Google Scholar 

  • M.D. Reller, M.J. Strickland, T. Riehle-Colarusso, W.T. Mahle, A. Correa, Prevalence of congenital heart defects in metropolitan Atlanta, 1998-2005. J. Pediatr. 153(6), 807–813 (Dec. 2008)

    Google Scholar 

  • F. Rengier et al., 3D printing based on imaging data: review of medical applications. Int. J. Comput. Assist. Radiol. Surg. 5(4), 335–341 (2010)

    Google Scholar 

  • M. Robiony et al., Accuracy of virtual reality and stereolithographic models in maxillo-facial surgical planning. J. Craniofac. Surg. 19(2), 482–489 (2008)

    Google Scholar 

  • D. Rohner, R. Guijarro-Martínez, P. Bucher, B. Hammer, Importance of patient-specific intraoperative guides in complex maxillofacial reconstruction. J. Cranio-Maxillofac. Surg. 41(5), 382–390 (2013)

    Google Scholar 

  • M. Ruf and J. Harms, Hemivertebra resection by a posterior approach: innovative operative technique and first results. Spine, (2002)

  • H.F. Sailer, P.E. Haers, C.P. Zollikofer, T. Warnke, F.R. Carls, P. Stucki, The value of stereolithographic models for preoperative diagnosis of craniofacial deformities and planning of surgical corrections. Int. J. Oral Maxillofac. Surg. 27(5), 327–333 (1998)

    Google Scholar 

  • E.K. Sannomiya, J.V.L. Silva, A.A. Brito, D.M. Saez, F. Angelieri, G. da Silva Dalben, Surgical planning for resection of an ameloblastoma and reconstruction of the mandible using a selective laser sintering 3D biomodel. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod 106, 36–40 (2008)

    Google Scholar 

  • C. Santler, H. Karcher, C. Ruda, Indications and limitations of three-dimensional models in cranio-maxillofacial surgery. J. Craniomaxillofac. Surg. 26(1), 11–16 (1998)

    Google Scholar 

  • R.M. Satava, Accomplishments and challenges of surgical simulation. Surg. Endosc. 15(3), 232–241 (Mar. 2001)

    Google Scholar 

  • S. Schievano et al., Percutaneous pulmonary valve implantation based on rapid prototyping of right ventricular outflow tract and pulmonary trunk from MR data. Radiology 242(2), 490–497 (2007)

    Google Scholar 

  • D. Schmauss et al., Three-dimensional printing of models for preoperative planning and simulation of transcatheter valve replacement. Ann. Thorac. Surg. 93(2), e31–e33 (2012)

    Google Scholar 

  • D. Schmauss, N. Gerber, R. Sodian, Three-dimensional printing of models for surgical planning in patients with primary cardiac tumors. J Thorac Cardiovasc Surg 145(5), 1407–1408 (2013)

    Google Scholar 

  • I. Shiraishi, M. Yamagishi, K. Hamaoka, M. Fukuzawa, T. Yagihara, Simulative operation on congenital heart disease using rubber-like urethane stereolithographic biomodels based on 3D datasets of multislice computed tomography. Eur. J. Cardio-Thorac. Surg. Off. J. Eur. Assoc. Cardio-Thorac. Surg. 37(2), 302–306 (2010)

    Google Scholar 

  • D.P. Sinn, J.E. Cillo, B. a Miles, Stereolithography for craniofacial surgery. J. Craniofac. Surg. 17(5), 869–875 (2006)

    Google Scholar 

  • R. Sodian et al., Stereolithographic models for surgical planning in congenital heart surgery. Ann. Thorac. Surg. 83, 1854–1857 (2007)

    Google Scholar 

  • R. Sodian et al., Pediatric cardiac transplantation: Three-dimensional printing of anatomic models for surgical planning of heart transplantation in patients with univentricular heart. J. Thorac. Cardiovasc. Surg. 136(4), 1098–1099 (2008a)

    Google Scholar 

  • R. Sodian et al., Three-dimensional printing creates models for surgical planning of aortic valve replacement after previous coronary bypass grafting. Ann. Thorac. Surg. 85(6), 2105–2108 (2008b)

    Google Scholar 

  • R. Sodian et al., 3-dimensional printing of models to create custom-made devices for coil embolization of an anastomotic leak after aortic arch replacement. Ann. Thorac. Surg. 88(3), 974–978 (2009)

    Google Scholar 

  • P.J. Spevak, P.T. Johnson, E.K. Fishman, Surgically corrected congenital heart disease: utility of 64-MDCT. AJR Am. J. Roentgenol. 191(3), 854–861 (2008)

    Google Scholar 

  • B.S. Spottiswoode et al., Preoperative three-dimensional model creation of magnetic resonance brain images as a tool to assist neurosurgical planning. Stereotact. Funct. Neurosurg. 91(3), 162–169 (2013)

    Google Scholar 

  • A.T. Stadie et al., Virtual reality system for planning minimally invasive neurosurgery. Technical note. J. Neurosurg. 108(2), 382–394 (Feb. 2008)

    Google Scholar 

  • Z.A. Starosolski, J.H. Kan, S.D. Rosenfeld, R. Krishnamurthy, A. Annapragada, Application of 3-D printing (rapid prototyping) for creating physical models of pediatric orthopedic disorders. Pediatr. Radiol. 44(2), 216–221 (2014)

    Google Scholar 

  • Y. Su, M. Wang, and W. Chang, Slotted acetabular augmentation in the treatment of painful residual dysplastic hips in adolescents and young adults. J. Formos. Med. …, (2008)

  • M. Suzuki, Y. Ogawa, A. Hagiwara, H. Yamaguchi, H. Ono, Rapidly prototyped temporal bone model for otological education. ORL J. Oto-Rhino-Laryngol. Its Relat. Spec. 66(2), 62–64 (2004a)

    Google Scholar 

  • M. Suzuki, Y. Ogawa, A. Kawano, A. Hagiwara, H. Yamaguchi, H. Ono, Rapid prototyping of temporal bone for surgical training and medical education. Acta Otolaryngol. (Stockh.) 124(4), 400–402 (2004b)

    Google Scholar 

  • M. Suzuki, A. Hagiwara, S. Kawaguchi, H. Ono, Application of a rapid-prototyped temporal bone model for surgical planning. Acta Otolaryngol. (Stockh.) 125(1), 29–32 (Jan. 2005)

    Google Scholar 

  • A. Thompson and D. Marks, Long-term results of combined anterior and posterior convex epiphysiodesis for congenital scoliosis due to hemivertebrae. Spine, (1995)

  • J.W.M. Tyl, L.E.C.M. Blank, L. Koornneef, Brachytherapy in orbital tumors. Ophthalmology 104(9), 1475–1479 (Sep. 1997)

    Google Scholar 

  • M. Umer, A. Thambyah, W. Tan, and S. De, Acetabular morphometry for determining hip dysplasia in the Singaporean population. J. Orthop. , (2006)

  • P. S. D. Urso et al., A technical note, (1999).

    Google Scholar 

  • I. Valverde et al., Three-dimensional printed models for surgical planning of complex congenital heart defects: an international multicentre study. Eur. J. Cardio-Thorac. Surg. Off. J. Eur. Assoc. Cardio-Thorac. Surg. 52(6), 1139–1148 (Dec. 2017)

    Google Scholar 

  • M. Vranicar, W. Gregory, W.I. Douglas, P. Di Sessa, T.G. Di Sessa, The use of stereolithographic hand held models for evaluation of congenital anomalies of the great arteries. Stud. Health Technol. Inform. 132, 538–543 (Jan. 2008)

    Google Scholar 

  • V. Waran et al., Injecting realism in surgical training—initial simulation experience with custom 3d models. J. Surg. Educ. 71(2), 193–197 (2014a)

    Google Scholar 

  • V. Waran, V. Narayanan, R. Karuppiah, S.L.F. Owen, T. Aziz, Utility of multimaterial 3D printers in creating models with pathological entities to enhance the training experience of neurosurgeons. J. Neurosurg. 120(2), 489–492 (2014b)

    Google Scholar 

  • V. Waran et al., Neurosurgical endoscopic training via a realistic 3-dimensional model with pathology. Simul. Healthc. J. Soc. Simul. Healthc. 10(1), 43–48 (2015)

    Google Scholar 

  • R.A. Watson, A Low-Cost Surgical Application of Additive Fabrication. J. Surg. Educ. 71(1), 14–17 (2014)

    Google Scholar 

  • J. Winder, R. Bibb, Medical rapid prototyping technologies: state of the art and current limitations for application in oral and maxillofacial surgery. J. Oral Maxillofac. Surg. 63(7), 1006–1015 (2005)

    Google Scholar 

  • R. Winter, J. Moe, and J. Lonstein, Posterior spinal arthrodesis for congenital scoliosis. An analysis of the cases of two hundred and ninety patients, five to nineteen years old. J. Bone Jt. Surg., (1984)

  • Z.-X. Wu et al., Accuracy and safety assessment of pedicle screw placement using the rapid prototyping technique in severe congenital scoliosis. J. Spinal Disord. Tech. 24(7), 444–450 (2011)

    Google Scholar 

  • G. Wurm, B. Tomancok, P. Pogady, K. Holl, J. Trenkler, Cerebrovascular stereolithographic biomodeling for aneurysm surgery. Technical note. J Neurosurg 100(1), 139–145 (2004)

    Google Scholar 

  • W.-H. Xu, J. Liu, M.-L. Li, Z.-Y. Sun, J. Chen, J.-H. Wu, 3D printing of intracranial artery stenosis based on the source images of magnetic resonance angiograph. Ann. Transl. Med. 2(8), 74 (2014)

    Google Scholar 

  • P. Zardini, P. Marino, G. Golia, M. Anselmi, M. Castelli, Ventricular remodeling and infarct expansion. Am. J. Cardiol. 72(19), G98–G106 (Dec. 1993)

    Google Scholar 

  • L. Zhou, L. He, H. Shang, G. Liu, J. Zhao, Y. Liu, Correction of hemifacial microsomia with the help of mirror imaging and a rapid prototyping technique: case report. Br. J. Oral Maxillofac. Surg. 47(6), 486–488 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashid Bashir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganguli, A., Pagan-Diaz, G.J., Grant, L. et al. 3D printing for preoperative planning and surgical training: a review. Biomed Microdevices 20, 65 (2018). https://doi.org/10.1007/s10544-018-0301-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-018-0301-9

Keywords

Navigation