Skip to main content
Log in

Flexible 3D carbon nanotubes cuff electrodes as a peripheral nerve interface

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

The cuff electrode provides a stable interface with peripheral nerves, which has been widely used in basic research and clinical practice. Currently, the cuff electrodes are limited by the planar processing of microfabrication. This paper presents a novel cuff electrode using high-aspect ratio carbon nanotubes (CNTs) integrated on a flexible biocompatible parylene. The microfabrication process unites the high quality vertical CNTs grown at high temperature with the heat sensitive parylene substrate in a highly controllable manner. The fabricated cuff electrodes have been utilized for extracellular nerve stimulation in rats. The experimental results demonstrate the proposed CNT electrode has a better performance than Pt electrode in nerve stimulation. Moreover, the effect of electrode position and stimulation frequency is demonstrated in this paper. This preliminary data indicates that flexible 3D CNTs cuff electrode provides an excellent platform for functional electrical stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • V. Castagnola, E. Descamps, A. Lecestre, L. Dahan, J. Remaud, L.G. Nowak, C. Bergaud, Biosens. Bioelectron. 67, 450–457 (2015)

    Article  Google Scholar 

  • S.F. Cogan, Annu. Rev. Biomed. Eng. 10, 275–309 (2008)

    Article  Google Scholar 

  • M. David-Pur, L. Bareket-Keren, G. Beit-Yaakov, D. Raz-Prag, D. Rand, Y. Hanein, Sensors 2013, 1–4 (2013)

    Google Scholar 

  • C. Ethier, E.R. Oby, M. Bauman, L.E. Miller, Nature 485, 368–371 (2012)

    Article  Google Scholar 

  • C. Hassler, R.P. von Metzen, P. Ruther, T. Stieglitz, J Biomed Mater Res B Appl Biomater 93, 266–274 (2010)

    Google Scholar 

  • X. Kang, J.-Q. Liu, H. Tian, B. Yang, Y. Nuli, C. Yang, J. Microelectromech. Syst. 24, 319–332 (2015)

    Article  Google Scholar 

  • E.W. Keefer, B.R. Botterman, M.I. Romero, A.F. Rossi, G.W. Gross, Nat. Nanotechnol. 3, 434–439 (2008)

    Article  Google Scholar 

  • D.-H. Kim, R. Ghaffari, N. Lu, J.A. Rogers, Annu. Rev. Biomed. Eng. 14, 113–128 (2012)

    Article  Google Scholar 

  • S. Lee, S. Sheshadri, Z. Xiang, I. Delgado-Martinez, N. Xue, T. Sun, N.V. Thakor, S.-C. Yen, C. Lee, Sensors Actuators B Chem. 242, 1165–1170 (2017)

    Article  Google Scholar 

  • Y.E. Mironer, J.K. Hutcheson, J.R. Satterthwaite, P.C. LaTourette, Neuromodulation: Technology at the Neural Interface 14, 151–155 (2011)

    Article  Google Scholar 

  • X. Navarro, T.B. Krueger, N. Lago, S. Micera, T. Stieglitz, P. Dario, J. Peripher. Nerv. Syst. 10, 229–258 (2005)

    Article  Google Scholar 

  • M. Ochoa, P. Wei, A.J. Wolley, K.J. Otto, B. Ziaie, Biomed. Microdevices 15, 437–443 (2013)

    Article  Google Scholar 

  • E. Slavcheva, R. Vitushinsky, W. Mokwa, U. Schnakenberg, J. Electrochem. Soc. 151, E226–E237 (2004)

    Article  Google Scholar 

  • A. Weremfo, P. Carter, D.B. Hibbert, C. Zhao, Langmuir 31, 2593–2599 (2015)

    Article  Google Scholar 

  • X. Xie, L. Rieth, L. Williams, S. Negi, R. Bhandari, R. Caldwell, R. Sharma, P. Tathireddy, F. Solzbacher, J. Neural Eng. 11, 026016 (2014)

    Article  Google Scholar 

  • W. Yi, C. Chen, Z. Feng, Y. Xu, C. Zhou, N. Masurkar, J. Cavanaugh, M.M.-C. Cheng, Nanotechnology 26, 125301 (2015)

    Article  Google Scholar 

  • H. Yu, W. Xiong, H. Zhang, W. Wang, Z. Li, J. Microelectromech. Syst. 23, 1025–1035 (2014)

    Article  Google Scholar 

  • H. Zhang, P.R. Patel, Z. Xie, S.D. Swanson, X. Wang, N.A. Kotov, ACS Nano 7, 7619–7629 (2013)

    Article  Google Scholar 

  • M. Zhi, F. Yang, F. Meng, M. Li, A. Manivannan, N. Wu, ACS Sustain. Chem. Eng. 2, 1592–1598 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The device was fabricated using Nano Fabrication Core (nFab) at Wayne State University. This work was supported by National Science Foundation (NSF) CAREER Award (1055932), NSF MRI Award (1229635), National Natural Science Foundation of China (51775332, 51675329), Major Project of National Social Science Fund (17ZDA020), Shanghai Committee of Science and Technology (15142200800, 16441906000, 16XD1425000), National Key R&D Program of China (2016YFF0101602, 2016YFC0104104), the State Key Laboratory of Mechanical System and Vibration (MSV201601).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Hu or Mark Ming-Cheng Cheng.

Additional information

Jie Hu and Mark Ming-Cheng Cheng’s groups contribute the work equally, and they are listed as co-corresponding authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, P., Yi, W., Chen, C. et al. Flexible 3D carbon nanotubes cuff electrodes as a peripheral nerve interface. Biomed Microdevices 20, 21 (2018). https://doi.org/10.1007/s10544-018-0268-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-018-0268-6

Keywords

Navigation