Skip to main content

Advertisement

Log in

Measurement of cell traction force with a thin film PDMS cantilever

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Adherent cells produce cellular traction force (CTF) on a substrate to maintain their physical morphologies, sense external environment, and perform essential cellular functions. Precise characterization of the CTF can expand our knowledge of various cellular processes as well as lead to the development of novel mechanical biomarkers. However, current methods that measure CTF require special substrates and fluorescent microscopy, rendering them less suitable in a clinical setting. Here, we demonstrate a rapid and direct approach to measure the combined CTF of a large cell population using thin polydimethylsiloxane (PDMS) cantilevers. Cells attached to the top surface of the PDMS cantilever produce CTF, which causes the cantilever to bend. The side view of the cantilever was imaged with a low-cost camera to extract the CTF. We characterized the CTF of fibroblasts and breast cancer cells. In addition, we were able to directly measure the contractile force of a suspended cell sheet, which is similar to the CTF of the confluent cell layer before detachment. The demonstrated technique can provide rapid and real-time measurement of the CTF of a large cell population and can directly characterize its temporal dynamics. The developed thin film PDMS cantilever can be fabricated affordably and the CTF extraction technique does not require expensive equipment. Thus, we believe that the developed method can provide an easy-to-use and affordable platform for CTF characterization in clinical settings and laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • R. Ananthakrishnan, A. Ehrlicher, The forces behind cell movement. Int. J. Biol. Sci. 3(5), 303–317 (2007)

    Article  Google Scholar 

  • J.M. Atienza, J. Zhu, X. Wang, X. Xu, Y. Abassi, Dynamic monitoring of cell adhesion and spreading on microelectronic sensor arrays. J. Biomol. Screen. 10(8), 795–805 (2005)

    Article  Google Scholar 

  • F.A. Atienzar, K. Tilmant, H.H. Gerets, G. Toussaint, S. Speeckaert, E. Hanon, O. Depelchin, S. Dhalluin, The use of real-time cell analyzer technology in drug discovery: Defining optimal cell culture conditions and assay reproducibility with different adherent cellular models. J. Biomol. Screen. 16(6), 575–587 (2011)

    Article  Google Scholar 

  • N.Q. Balaban, U.S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, S. Safran, A. Bershadsky, L. Addadi, Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat. Cell Biol. 3(5), 466–472 (2001)

    Article  Google Scholar 

  • C. Barentin, Y. Sawada, J.-P. Rieu, An iterative method to calculate forces exerted by single cells and multicellular assemblies from the detection of deformations of flexible substrates. Eur. Biophys. J. 35(4), 328–339 (2006)

    Article  Google Scholar 

  • E. Bell, B. Ivarsson, C. Merrill, Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc. Natl. Acad. Sci. 76(3), 1274–1278 (1979)

    Article  Google Scholar 

  • K.A. Beningo, Y.-L. Wang, Flexible substrata for the detection of cellular traction forces. Trends Cell Biol. 12(2), 79–84 (2002)

    Article  Google Scholar 

  • K.A. Beningo, M. Dembo, I. Kaverina, J.V. Small, Y.-l. Wang, Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J. Cell Biol. 153(4), 881–888 (2001)

    Article  Google Scholar 

  • M. Bergert, T. Lendenmann, M. Zündel, A.E. Ehret, D. Panozzo, P. Richner, D.K. Kim, S.J. Kress, D.J. Norris, O. Sorkine-Hornung, Confocal reference free traction force microscopy. Nat. Commun. 7, 12814 (2016)

    Article  Google Scholar 

  • L.R. Bernstein, L.A. Liotta, Molecular mediators of interactions with extracellular matrix components in metastasis and angiogenesis. Curr. Opin. Oncol. 6(1), 106 (1994)

    Article  Google Scholar 

  • F. Bordeleau, B. Chan, M.A. Antonyak, M.C. Lampi, R.A. Cerione, C.A. Reinhart-King, Microvesicles released from tumor cells disrupt epithelial cell morphology and contractility. J. Biomech. 49(8), 1272–1279 (2016)

    Article  Google Scholar 

  • J.P. Butler, I.M. Tolić-Nørrelykke, B. Fabry, J.J. Fredberg, Traction fields, moments, and strain energy that cells exert on their surroundings. Am. J. Phys. Cell Phys. 282(3), C595–C605 (2002)

    Article  Google Scholar 

  • J.P. Califano, C.A. Reinhart-King, Substrate stiffness and cell area predict cellular traction stresses in single cells and cells in contact. Cell. Mol. Bioeng. 3(1), 68–75 (2010)

    Article  Google Scholar 

  • M. Dembo, Y.-L. Wang, Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76(4), 2307–2316 (1999)

    Article  Google Scholar 

  • D.E. Discher, P. Janmey, Y.-l. Wang, Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751), 1139–1143 (2005)

    Article  Google Scholar 

  • H.P. Ehrlich, The role of connective tissue matrix in wound healing. Prog. Clin. Biol. Res. 266, 243–258 (1987)

    Google Scholar 

  • M.F. Fournier, R. Sauser, D. Ambrosi, J.-J. Meister, A.B. Verkhovsky, Force transmission in migrating cells. J. Cell Biol. 188(2), 287–297 (2010)

    Article  Google Scholar 

  • M.L. Gardel, I.C. Schneider, Y. Aratyn-Schaus, C.M. Waterman, Mechanical integration of actin and adhesion dynamics in cell migration. Annu. Rev. Cell Dev. Biol. 26, 315–333 (2010)

    Article  Google Scholar 

  • M. Ghibaudo, A. Saez, L. Trichet, A. Xayaphoummine, J. Browaeys, P. Silberzan, A. Buguin, B. Ladoux, Traction forces and rigidity sensing regulate cell functions. Soft Matter 4(9), 1836–1843 (2008)

    Article  Google Scholar 

  • A.K. Harris, P. Wild, D. Stopak, Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208(4440), 177–179 (1980)

    Article  Google Scholar 

  • M.T. Holley, N. Nagarajan, C. Danielson, P. Zorlutuna, K. Park, Development and characterization of muscle-based actuators for self-stabilizing swimming biorobots. Lab Chip 16(18), 3473–3484 (2016)

    Article  Google Scholar 

  • J.D. Humphrey, E.R. Dufresne, M.A. Schwartz, Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15(12), 802 (2014)

    Article  Google Scholar 

  • N. Ke, X. Wang, X. Xu, Y.A. Abassi, The xCELLigence system for real-time and label-free monitoring of cell viability. In: Stoddart M. (eds) Mammalian Cell Viability. Methods Mol. Biol. (Methods and Protocols). Humana Press. (2011). https://doi.org/10.1007/978-1-61779-108-6_6

  • T.M. Koch, S. Münster, N. Bonakdar, J.P. Butler, B. Fabry, 3D traction forces in cancer cell invasion. PLoS One 7(3), e33476 (2012)

    Article  Google Scholar 

  • C.M. Kraning-Rush, S.P. Carey, J.P. Califano, B.N. Smith, C.A. Reinhart-King, The role of the cytoskeleton in cellular force generation in 2D and 3D environments. Phys. Biol. 8(1), 015009 (2011)

    Article  Google Scholar 

  • C.M. Kraning-Rush, J.P. Califano, C.A. Reinhart-King, Cellular traction stresses increase with increasing metastatic potential. PLoS One 7(2), e32572 (2012)

    Article  Google Scholar 

  • S.H. Ku, J. Ryu, S.K. Hong, H. Lee, C.B. Park, General functionalization route for cell adhesion on non-wetting surfaces. Biomaterials 31(9), 2535–2541 (2010)

    Article  Google Scholar 

  • C.A. Lemmon, N.J. Sniadecki, S.A. Ruiz, J.L. Tan, L.H. Romer, C.S. Chen, Shear force at the cell-matrix interface: Enhanced analysis for microfabricated post array detectors. Mech. Chem. Biosyst. 2(1), 1 (2005)

    Google Scholar 

  • B. Li, J.H.-C. Wang, Fibroblasts and myofibroblasts in wound healing: force generation and measurement. J. Tissue Viability 20(4), 108–120 (2011)

    Article  Google Scholar 

  • M.S. Liberio, M.C. Sadowski, C. Soekmadji, R.A. Davis, C.C. Nelson, Differential effects of tissue culture coating substrates on prostate cancer cell adherence, morphology and behavior. PLoS One 9(11), e112122 (2014)

    Article  Google Scholar 

  • C.-M. Lo, H.-B. Wang, M. Dembo, Y.-l. Wang, Cell movement is guided by the rigidity of the substrate. Biophys. J. 79(1), 144–152 (2000)

    Article  Google Scholar 

  • J. Lötters, W. Olthuis, P. Veltink, P. Bergveld, The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. J. Micromech. Microeng. 7(3), 145 (1997)

    Article  Google Scholar 

  • P. Martin, Wound healing--aiming for perfect skin regeneration. Science 276(5309), 75–81 (1997)

    Article  Google Scholar 

  • S.A. Maskarinec, C. Franck, D.A. Tirrell, G. Ravichandran, Quantifying cellular traction forces in three dimensions. Proc. Natl. Acad. Sci. 106(52), 22108–22113 (2009)

    Article  Google Scholar 

  • T. Mitchison, L. Cramer, Actin-based cell motility and cell locomotion. Cell 84(3), 371–379 (1996)

    Article  Google Scholar 

  • S. Munevar, Y.-l. Wang, M. Dembo, Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts. Biophys. J. 80(4), 1744–1757 (2001)

    Article  Google Scholar 

  • P.W. Oakes, S. Banerjee, M.C. Marchetti, M.L. Gardel, Geometry regulates traction stresses in adherent cells. Biophys. J. 107(4), 825–833 (2014)

    Article  Google Scholar 

  • J. Park, J. Ryu, S.K. Choi, E. Seo, J.M. Cha, S. Ryu, J. Kim, B. Kim, S.H. Lee, Real-time measurement of the contractile forces of self-organized cardiomyocytes on hybrid biopolymer microcantilevers. Anal. Chem. 77(20), 6571–6580 (2005)

    Article  Google Scholar 

  • A.J. Ribeiro, A.K. Denisin, R.E. Wilson, B.L. Pruitt, For whom the cells pull: Hydrogel and micropost devices for measuring traction forces. Methods 94, 51–64 (2016)

    Article  Google Scholar 

  • I. Schoen, W. Hu, E. Klotzsch, V. Vogel, Probing cellular traction forces by micropillar arrays: contribution of substrate warping to pillar deflection. Nano Lett. 10(5), 1823–1830 (2010)

    Article  Google Scholar 

  • M.P. Sheetz, D.P. Felsenfeld, C.G. Galbraith, Cell migration: Regulation of force on extracellular-matrix-integrin complexes. Trends Cell Biol. 8(2), 51–54 (1998)

    Article  Google Scholar 

  • J. Tamayo, J.J. Ruz, V. Pini, P. Kosaka, M. Calleja, Quantification of the surface stress in microcantilever biosensors: Revisiting Stoney’s equation. Nanotechnology 23(47), 475702 (2012)

    Article  Google Scholar 

  • J.L. Tan, J. Tien, D.M. Pirone, D.S. Gray, K. Bhadriraju, C.S. Chen, Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl. Acad. Sci. 100(4), 1484–1489 (2003)

    Article  Google Scholar 

  • J.H. Wang, J.-S. Lin, Cell traction force and measurement methods. Biomech. Model. Mechanobiol. 6(6), 361 (2007)

    Article  Google Scholar 

  • Y.-L. Wang, R.J. Pelham, [39] Preparation of a flexible, porous polyacrylamide substrate for mechanical studies of cultured cells. Methods Enzymol. 298, 489–496 (1998)

    Article  Google Scholar 

  • Z. Yang, J.-S. Lin, J. Chen, J.H. Wang, Determining substrate displacement and cell traction fields—a new approach. J. Theor. Biol. 242(3), 607–616 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge support from LSU Biomedical Collaborative Research Program (LBCRP). Dr. Alahari is supported by Fred G. Brazda foundation and LSUHSC school of Medicine research funds. M. T. Holley is supported by the Graduate Fellows program of the Louisiana Board of Regents. Mazvita Maziveyi is supported by Department of Biochemistry at LSUHSC School of Medicine and Graduate Studies

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kidong Park.

Electronic supplementary material

ESM 1

(DOCX 32 kb)

ESM 2

(PPTX 2787 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holley, M.T., YekrangSafakar, A., Maziveyi, M. et al. Measurement of cell traction force with a thin film PDMS cantilever. Biomed Microdevices 19, 97 (2017). https://doi.org/10.1007/s10544-017-0239-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-017-0239-3

Keywords

Navigation