Skip to main content
Log in

An investigation of vibration-induced protein desorption mechanism using a micromachined membrane and PZT plate

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

A micromachined vibrating membrane is used to remove adsorbed proteins on a surface. A lead zirconate titanate (PZT) composite (3 × 1 × 0.5 mm) is attached to a silicon membrane (2,000 × 500 × 3 μm) and vibrates in a flexural plate wave (FPW) mode with wavelength of 4,000/3 μm at a resonant frequency of 308 kHz. The surface charge on the membrane and fluid shear stress contribute in minimizing the protein adsorption on the SiO2 surface. In vitro characterization shows that 57 ± 10% of the adsorbed bovine serum albumin (BSA), 47 ± 13% of the immunoglobulin G (IgG), and 55.3~59.2 ± 8% of the proteins from blood plasma are effectively removed from the vibrating surface. A simulation study of the vibration-frequency spectrum and vibrating amplitude distribution matches well with the experimental data. Potentially, a microelectromechanical system (MEMS)-based vibrating membrane could be the tool to minimize biofouling of in vivo MEMS devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • K.M. Ainslie, G. Sharma, M.A. Dyer, C.A. Grimes, M.V. Pishko, Nano. Lett 5, 1852 (2005)

    Article  Google Scholar 

  • C. Allen, N.D. Santos, R. Gallagher, G.N.C. Chiu, Y. Shu, W.M. Li, S.A. Johnstone, A.S. Janoff, L.D. Mayer, M.S. Webb, M.B. Bally, Biosci. Rep 22, 225 (2002)

    Article  Google Scholar 

  • D.S. Ballantine, R.M. White, S.I. Martin, A.I. Ricco, E.T. Zellers, G.C. Frye, H. Wohltjen, Acoustic Wave Sensors: Theory, Design, and Physico-chemical Applications (Academic, San Diego, 1997), Chapter 3

    Google Scholar 

  • R. Bashir, Adv. Drug Deliv. Rev 56, 1565 (2004)

    Article  Google Scholar 

  • B. Blombäck, L.A. Hanson, Plasma Proteins (Pitman, Bath, 1975), pp. 17–21

    Google Scholar 

  • S.C. Chen, C.H. Cheng, Y.C. Lin, Sens. Actuators A Phys 135, 1 (2007)

    Article  Google Scholar 

  • J.R. Cogdell, Foundations of Electrical Engineering (Prentice Hall, Englewood Cliffs, 1990)

    Google Scholar 

  • E.A.S. Doherty, R.J. Meagher, M.N. Albarghouthi, A.E. Barron, Electrophoresis 24, 34 (2003)

    Article  Google Scholar 

  • D.M. Fraser, in Biosensors in the Body: Continuous in vivo Monitoring, ed. by D.M. Fraser (Wiley, Chichester, 1997), Chapter 1

    Google Scholar 

  • R. Gref, M. Lück, P. Quellec, M. Marchand, E. Dellacherie, S. Harnisch, T. Blunk, R.H. Müller, Colloids Surf., B Biointerfaces 18, 301 (2000)

    Article  Google Scholar 

  • H. Guo, A. Lal, IEEE Ultrasonics Symposium (IEEE, Atlanta, 2001), p. 799

    Google Scholar 

  • N.P. Huang, R. Michel, J. Vörös, M. Textor, R. Hofer, A. Rossi, D.L. Elbert, J.A. Hubbell, N.D. Spencer, Langmuir 17, 489 (2001)

    Article  Google Scholar 

  • T.T. Huang, J. Sturgis, R. Gomez, T. Geng, R. Bashir, A.K. Bhunia, J.P. Robinson, M.R. Ladisch, Biotechnol. Bioeng 81, 618 (2003)

    Article  Google Scholar 

  • H. Jacobs, D. Grainger, T. Okano, S.W. Kim, Artif. Organs 12, 506 (1988)

    Article  Google Scholar 

  • A.L. Klibanov, V.P. Torchilin, S. Zalipsky, in Liposomes, ed. by V.P. Torchilin, V. Weissig (Oxford University Press, Oxford, 2003), p. 231–265

    Google Scholar 

  • H. Makamba, J.H. Kim, K. Lim, N. Park, J.H. Hahn, Electrophoresis 24, 3607 (2003)

    Article  Google Scholar 

  • M. Malmsten, B.O. Lassen, in Protein at Interfaces II, ed. by T.A. Horbett, J.L. Brash (American Chemistry Society, Washington, DC, 1995), Chapter 16

    Google Scholar 

  • G.D. Meyer, J.M. Morán-Mirabal, D.W. Branch, H.G. Craighead, IEEE Sens. J 6, 254 (2006)

    Article  Google Scholar 

  • N.T. Nguyen, R.M. White, Sens. Actuators A Phys 77, 229 (1999)

    Article  Google Scholar 

  • N.T. Nguyen, A.H. Meng, J. Black, R.M. White, Sens. Actuators A Phys 79, 115 (2000)

    Article  Google Scholar 

  • C.M. Nolan, C.D. Reyes, J.D. Debord, A.J. Garcia, L.A. Lyon, Biomacromolecules 6, 2032 (2005)

    Article  Google Scholar 

  • R.G. Nuzzo, Nat. Mater 2, 207 (2003)

    Article  Google Scholar 

  • S. Pasche, J. Vörös, H.J. Griesser, N.D. Spencer, M. Textor, J. Phys. Chem. B 109, 17545 (2005)

    Article  Google Scholar 

  • K.L. Prime, G.M. Whitesides, J. Am. Chem. Soc 115, 10714 (1993)

    Article  Google Scholar 

  • Q. Qi, G.J. Brereton, IEEE Trans. Ultrason. Ferroelectr 42, 619 (1995)

    Article  Google Scholar 

  • M. Rahmoune, M. Latour, Smart Mater. Struct 4, 195 (1995)

    Article  Google Scholar 

  • B.D. Ratner, S.J. Bryant, Annu. Rev. Biomed. Eng 6, 41 (2004)

    Article  Google Scholar 

  • G.P. Rigby, P.W. Crump, P. Vadgama, Med. Biol. Eng. Comput 33, 231 (1995)

    Article  Google Scholar 

  • G.P. Rigby, P.W. Crump, P. Vadgama, Analyst 121, 871 (1996)

    Article  Google Scholar 

  • P. Roach, D. Farrar, C.C. Perry, J. Am. Chem. Soc 128, 3939 (2006)

    Article  Google Scholar 

  • S. Sharma, R.W. Johnson, T.A. Desai, Biosens. Bioelectron 20, 227 (2004)

    Article  Google Scholar 

  • G.B. Sigal, M. Mrksich, G.M. Whitesides, J. Am. Chem. Soc 120, 3464 (1998)

    Article  Google Scholar 

  • A.W. Wang, R. Kiwan, R.M. White, R.L. Ceriani, Sens. Actuators B Chem 49, 13 (1998)

    Article  Google Scholar 

  • M.S. Weinberg, C.E. Dube, A. Petrovich, A.M. Zapata, J. Microelectromech. Syst 12, 567 (2003)

    Article  Google Scholar 

  • A. Whelan, F. Regan, J. Environ. Monit 8, 880 (2006)

    Article  Google Scholar 

  • N. Wisniewski, M. Reichert, Colloids Surf., B Biointerfaces 18, 197 (2000)

    Article  Google Scholar 

  • N. Wisniewski, F. Moussy, W.M. Reichert, Fresenius J. Anal. Chem 366, 611 (2000)

    Article  Google Scholar 

  • P.Y. Yeh, J.N. Kizhakkedathu, J.D. Madden, M. Chiao, Colloids Surf., B Biointerfaces 59, 67 (2007)

    Article  Google Scholar 

  • J.S. Yoon, J.W. Choi, H. Lee, M.S. Kim, Sens. Actuators A Phys 135, 833 (2007)

    Article  Google Scholar 

  • M. Zhang, M. Ferrari, Biotech. Bioeng 56, 618 (1997)

    Article  Google Scholar 

  • H. Zhu, M. Snyder, Curr. Opin. Chem. Biol 7, 55 (2003)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), Canada Foundation for Innovation (CFI). Dr. Chiao is supported by Canada Research Chair, Tier 2 program. J.N.K. is the recipient of a CBS/CIHR new investigator award in transfusion science.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jayachandran N. Kizhakkedathu or Mu Chiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeh, P.Y., Le, Y., Kizhakkedathu, J.N. et al. An investigation of vibration-induced protein desorption mechanism using a micromachined membrane and PZT plate. Biomed Microdevices 10, 701–708 (2008). https://doi.org/10.1007/s10544-008-9181-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-008-9181-8

Keywords

Navigation