Skip to main content
Log in

Extended and rational Hessenberg methods for the evaluation of matrix functions

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

Some Krylov subspace methods for approximating the action of matrix functions are presented in this paper. The main idea of these techniques is to project the approximation problem onto a subspace of much smaller dimension. Then the matrix function operation is performed with a much smaller matrix. These methods are projection methods that use the Hessenberg process to generate bases of the approximation spaces. We also use the introduced methods to solve shifted linear systems. Some numerical experiments are presented in order to show the efficiency of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afanasjew, M., Eiermann, M., Ernst, O.G., Güttel, S.: A generalization of the steepest descent method for matrix functions. Electron. Trans. Numer. Anal. 28, 206–222 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Allen, E.J., Baglama, J., Boyd, S.K.: Numerical approximation of the product of the square root of a matrix with a vector. Linear Algebra Appl. 310, 167–181 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amini, S., Toutounian, F., Gachpazan, M.: The block CMRH method for solving nonsymmetric linear systems with multiple right-hand sides. J. Comput. Appl. Math. 337, 166–174 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Amini, S., Toutounian, F.: Weighted and flexible versions of block CMRH method for solving nonsymmetric linear systems with multiple right-hand sides. Comput. Math. Appl. 76, 2011–2021 (2018)

    Article  MathSciNet  Google Scholar 

  5. Beckermann, B., Güttel, S.: Superlinear convergence of the rational Arnoldi method for the approximation of matrix functions. Numer. Math. 121, 205–236 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beckermann, B., Reichel, L.: Error estimation and evaluation of matrix functions via the Faber transform. SIAM J. Numer. Anal. 47, 3849–3883 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benzi, M., Razouk, N.: Decay bounds and O(n) algorithms for approximating functions of sparse matrices. Electron. Trans. Numer. Anal. 28, 16–39 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Calvetti, D., Reichel, L.: Lanczos-based exponential filtering for discrete ill-posed problems. Numer. Algorithms 29, 45–65 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Calvetti, D., Reichel, L., Zhang, Q.: Iterative exponential filtering for large discrete ill-posed problems. Numer. Math. 83, 535–556 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Crouzeix, M., Palencia, C.: The numerical range is a \( 1+\sqrt{2} \)-spectral set. SIAM J. Matrix Anal. Appl. 38, 649–655 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Datta, B.N., Saad, Y.: Arnoldi methods for large Sylvester-like observer matrix equations, and an associated algorithm for partial spectrum assignment. Linear Algebra Appl. 154–156, 225–244 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Druskin, V., Knizhnerman, L.: Two polynomial methods of calculating functions of symmetric matrices. U.S.S.R. Comput. Math. Math. Phys. 29, 112–121 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Druskin, V., Knizhnerman, L.: Krylov subspace approximation of eigenpairs and matrix functions in exact and computer arithmetic. Numer. Linear Algebra Appl. 2, 205–217 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Druskin, V., Knizhnerman, L.: Extended Krylov subspace approximations of the matrix square root and related functions. SIAM J. Matrix Anal. Appl. 19, 755–771 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Druskin, V., Knizhnerman, L., Zaslavsky, M.: Solution of large scale evolutionary problems using rational Krylov subspaces with optimized shifts. SIAM J. Sci. Comput. 31, 3760–3780 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Duminil, S.: A parallel implementation of the CMRH method for dense linear systems. Numer. Algorithms 63, 127–142 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Eiermann, M., Ernst, O.G.: A restarted Krylov subspace method for the evaluation of matrix functions. SIAM J. Numer. Anal. 44, 2481–2504 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fenu, C., Martin, D., Reichel, L., Rodriguez, G.: Block Gauss and anti-Gauss quadrature with application to networks. SIAM J. Matrix Anal. Appl. 34, 1655–1684 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fenu, C., Martin, D., Reichel, L., Rodriguez, G.: Network analysis via partial spectral factorization and Gauss quadrature. SIAM J. Sci. Comput. 35, 2046–2068 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Feriani, A., Perotti, F., Simoncini, V.: Iterative system solvers for the frequency analysis of linear mechanical systems. Comput. Meth. Appl. Mech. Eng. 190, 1719–1739 (2000)

    Article  MATH  Google Scholar 

  21. Freund, R.W.: Solution of shifted linear systems by quasi-minimal residual iterations. In: Reichel, L., Ruttan, A., Varga, R.S. (eds.) Numerical Linear Algebra, pp. 101–121. W. de Gruyter, Berlin, Germany (1993)

    Google Scholar 

  22. Frommer, A., Glässner, U.: Restarted GMRES for shifted linear systems. SIAM J. Sci. Comput. 19, 15–26 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gallopoulos, E., Saad, Y.: On the parallel solution of parabolic equations. In: Proceedings of the 3rd International Conference on Supercomputing, pp. 17–28. ACM (1989)

  24. Gallopoulos, E., Saad, Y.: Efficient solution of parabolic equations by Krylov approximation methods. SIAM J. Sci. Stat. Comput. 13, 1236–1264 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gu, G.: Restarted GMRES augmented with harmonic Ritz vectors for shifted linear systems. Int. J. Comput. Math. 82, 837–849 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gu, G., Zhang, J., Li, Z.: Restarted GMRES augmented with eigenvectors for shifted linear systems. Int. J. Comput. Math. 80, 1037–1047 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gu, X.M., Huang, T. Z., Carpentieri, B., Imakura, A., Zhang, K., Du, L.: Efficient variants of the CMRH method for solving multi-shifted non-Hermitian linear systems. arXiv:1611.00288. Accessed on 24 Feb 2018

  28. Gu, X.M., Huang, T.Z., Yin, G., Carpentieri, B., Wen, C., Du, L.: Restarted Hessenberg method for solving shifted nonsymmetric linear systems. J. Comput. Appl. Math. 331, 166–177 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Güttel, S., Knizhnerman, L.: A black-box rational Arnoldi variant for Cauchy–Stietljes matrix functions. BIT Numer. Math. 53, 595–616 (2013)

    Article  MATH  Google Scholar 

  30. Güttel, S.: Rational Krylov methods for operator functions. Ph.D. thesis (2010)

  31. Güttel, S.: Rational Krylov approximation of matrix functions: numerical methods and optimal pole selection. GAMM-Mitteilungen 36, 8–31 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hessenberg, K.: Behandlung der linearen Eigenwert-Aufgaben mit Hilfe der HamiltonCayleychen Gleichung. Darmstadt dissertation (1940)

  33. Heyouni, M.: Extended Arnoldi methods for large low-rank Sylvester matrix equations. Appl. Numer. Math. 60, 1171–1182 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Heyouni, M., Sadok, H.: A new implementation of the CMRH method for solving dense linear systems. J. Comput. Appl. Math. 213, 387–399 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Heyouni, M., Jbilou, K.: An extended block method for large-scale continuous-time algebraic Riccati equations. Technical report. L.M.P.A. Université du Littoral (2007)

  36. Heyouni, M., Essai, A.: Matrix Krylov subspace methods for linear systems with multiple right-hand sides. Numer. Algorithms 40, 137–156 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Heyouni, M.: The global Hessenberg and CMRH methods for linear systems with multiple right-hand sides. Numer. Algorithms 26, 317–332 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  38. Higham, N.J.: Functions of Matrices: Theory and Computation. SIAM, Philadelphia (2008)

    Book  MATH  Google Scholar 

  39. Hochbruck, M., Lubich, C.: On Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 34, 1911–1925 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  40. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  41. Jagels, C., Reichel, L.: The extended Krylov subspace method and orthogonal Laurent polynomials. Linear Algebra Appl. 431, 441–458 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Jagels, C., Reichel, L.: Recursion relations for the extended Krylov subspace method. Linear Algebra Appl. 434, 1716–1732 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Jing, Y.-F., Huang, T.-Z.: Restarted weighted full orthogonalization method for shifted linear systems. Comput. Math. Appl. 57, 1583–1591 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. Knizhnerman, L.: Calculation of functions of unsymmetric matrices using Arnoldis method. Comput. Math. Math. Phys. 31, 1–9 (1992)

    Google Scholar 

  45. Knizhnerman, L., Simoncini, V.: A new investigation of the extended Krylov subspace method for matrix function evaluations. Numer. Linear Algebra Appl. 17, 615–638 (2010)

    MathSciNet  MATH  Google Scholar 

  46. Knizhnerman, L., Simoncini, V.: Convergence analysis of the extended Krylov subspace method for the Lyapunov equation. Numer. Math. 118, 567–586 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Meerbergen, K.: The solution of parametrized symmetric linear systems. SIAM J. Matrix Anal. Appl. 24, 1038–1059 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  48. National Institute of Standards and Technology: Matrix Market. http://math.nist.gov/Matrix-Market. Accessed May 2007

  49. Pranić, S., Reichel, L., Rodriguez, G., Wang, Z., Yu, X.: A rational Arnoldi process with applications. Numer. Linear Algebra Appl. 23, 1007–1022 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  50. Ruhe, A.: Rational Krylov sequence methods for eigenvalue computation. Linear Algebra Appl. 58, 391–405 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  51. Ruhe, A.: Rational Krylov algorithms for nonsymmetric eigenvalue problems. IMA Vol. Math. Appl. 60, 149–164 (1994)

    MathSciNet  MATH  Google Scholar 

  52. Ruhe, A.: Rational Krylov algorithms for nonsymmetric eigenvalue problems II. Matrix pairs. Linear Algebra Appl. 197–198, 283–295 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  53. Ruhe, A.: The rational Krylov algorithm for nonsymmetric eigenvalue problems. III: complex shifts for real matrices. BIT Numer. Math. 34, 165–176 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  54. Ruhe, A.: Rational Krylov: a practical algorithm for large sparse nonsymmetric matrix pencils. SIAM J. Sci. Comput. 19, 1535–1551 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  55. Saad, Y.: Analysis of some Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 29, 209–228 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  56. Sadok, H.: CMRH: a new method for solving nonsymmetric linear systems based on the Hessenberg reduction algorithm. Numer. Algorithms 20, 303–321 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  57. Sadok, H., Szyld, D.B.: A new look at CMRH and its relation to GMRES. BIT Numer. Math. 52, 485–501 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  58. Schmelzer, T., Trefethen, L.N.: Evaluating matrix functions for exponential integrators via Carathodory–Fejr approximation and contour integrals. Electron. Trans. Numer. Anal. 29, 1–18 (2007)

    MathSciNet  MATH  Google Scholar 

  59. Schweitzer, M.: Restarting and error estimation in polynomial and extended Krylov subspace methods for the approximation of matrix functions. Ph.D. Thesis, Bergische Universität Wuppertal (2016)

  60. Simoncini, V.: Restarted full orthogonalization method for shifted linear systems. BIT Numer. Math. 43, 459–466 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  61. Simoncini, V.: A new iterative method for solving large-scale Lyapunov matrix equations. SIAM J. Sci. Comput. 29, 1268–1288 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  62. Simoncini, V.: Extended Krylov subspace for parameter dependent systems. Appl. Numer. Math. 60, 550–560 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  63. Simoncini, V., Szyld, D.B.: Recent computational developments in Krylov subspace methods for linear systems. J. Numer. Linear Algebra Appl. 14, 1–59 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  64. Sogabe, T., Hoshi, T., Zhang, S.-L., Fujiwara, T.: A numerical method for calculating the Greens function arising from electronic structure theory. In: Kaneda, Y., Kawamura, H., Sasai, M. (eds.) Frontiers of Computational Science, pp. 189–195. Springer, Berlin, Heidelberg (2007)

    Chapter  Google Scholar 

  65. Sogabe, T., Hoshi, T., Zhang, S.-L., Fujiwara, T.: On a weighted quasi-residual minimization strategy for solving complex symmetric shifted linear systems. Electron. Trans. Numer. Anal. 31, 126–140 (2008)

    MathSciNet  MATH  Google Scholar 

  66. Sogabe, T., Zhang, S.-L.: An extension of the COCR method to solving shifted linear systems with complex symmetric matrices. East Asian J. Appl. Math. 1, 97–107 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  67. Takayama, R., Hoshi, T., Sogabe, T., Zhang, S.-L., Fujiwara, T.: Linear algebraic calculation of Green’s function for large-scale electronic structure theory. Phys. Rev. B 73, 1–9 (2006)

    Article  Google Scholar 

  68. Teng, Z., Wang, X.: Heavy ball restarted CMRH methods for linear systems. Math. Comput. Appl. 23, 10 (2018)

    MathSciNet  MATH  Google Scholar 

  69. van der Vorst, H.A.: An iterative solution method for solving \(f (A)x = b\) using Krylov subspace information obtained for the symmetric positive definite matrix A. J. Comput. Appl. Math. 18, 249–263 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  70. van der Vorst, H.A.: Iterative Krylov Methods for Large Linear Systems. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  71. van Gijzen, M.B., Sleijpen, G.L.G., Zemke, J.P.M.: Flexible and multi-shift induced dimension reduction algorithms for solving large sparse linear systems. Numer. Linear Algebra Appl. 22, 1–25 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  72. Wilkinson, J.H.: The Algebraic Eigenvalue Problem. Clarendon Press, Oxford (1965)

    MATH  Google Scholar 

  73. Zhang, K., Gu, C.: A flexible CMRH algorithm for nonsymmetric linear systems. J. Appl. Math. Comput. 45, 43–61 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the referees for their valuable remarks and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Toutounian.

Additional information

Communicated by Lothar Reichel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramezani, Z., Toutounian, F. Extended and rational Hessenberg methods for the evaluation of matrix functions. Bit Numer Math 59, 523–545 (2019). https://doi.org/10.1007/s10543-018-0742-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-018-0742-9

Keywords

Mathematics Subject Classification

Navigation