Skip to main content
Log in

Multivariate data fitting with error control

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We show how a recently developed multivariate data fitting technique enables to solve a variety of scientific computing problems in filtering, queueing, networks, metamodelling, computational finance, graphics, and more. We can capture linear as well as nonlinear phenomena because the method uses a generalized multivariate rational model. The technique is a refinement of the basic ideas developed in Salazar et al. (Numer Algorithms 45:375–388, 2007. https://doi.org/10.1007/s11075-007-9077-3) and interpolates interval data. Intervals allow to take the inherent data error in measurements and simulation into consideration, whilst guaranteeing an upper bound on the tolerated range of uncertainty. The latter is the main difference with a best approximation or least squares technique which does as well as it can, but without respecting an a priori imposed threshold on the approximation error. Compared to the best approximations, the interval interpolant is relatively easy to compute. In applications where industry standards need to be guaranteed, the interval interpolation technique may be a valuable alternative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Allouche, H., Cuyt, A.: On the structure of a table of multivariate rational interpolants. Constr. Approx. 8, 69–86 (1992). https://doi.org/10.1007/BF01208907

    Article  MathSciNet  MATH  Google Scholar 

  2. Allouche, H., Cuyt, A.: Unattainable points in multivariate rational interpolation. J. Approx. Theory 72, 159–173 (1993). https://doi.org/10.1006/jath.1993.1013

    Article  MathSciNet  MATH  Google Scholar 

  3. Berrut, J.P.: Rational functions for guaranteed and experimentally well-conditioned global interpolation. Comput. Math. Appl. 15, 1–16 (1988). https://doi.org/10.1016/0898-1221(88)90067-3

    Article  MathSciNet  MATH  Google Scholar 

  4. Boehm, B.: Existence of best rational tchebycheff approximations. Pac. J. Math. 15(1), 19–28 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  6. Gilewicz, J., Magnus, A.: Valleys in \({C}\)-table. LNM 765, 135–149 (1979)

    MathSciNet  MATH  Google Scholar 

  7. Goldman, A.J., Tucker, A.W.: Polyhedral convex cones. In: Kuhn, H.W., Tucker, A.W. (eds.) Linear Inequalities and Related Systems. Annals of Mathematics Studies, vol. 38, p. 1940. Princeton University Press, Princeton (1956)

    Google Scholar 

  8. Gorinevsky, D., Boyd, S.: Optimization-based design and implementation of multi-dimensional zero-phase IIR filters. IEEE Trans. Circuits Syst. I 53(2), 372–383 (2006). https://doi.org/10.1109/TCSI.2005.856048

    Article  MathSciNet  MATH  Google Scholar 

  9. Harris, D.: Design of 2-D rational digital filters. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP ’81, pp. 696–699 (1981)

  10. Ibrahimoglu, B.A., Cuyt, A.: Sharp bounds for Lebesgue constants of barycentric rational interpolation. Exp. Math. 25(3), 347–354 (2016). https://doi.org/10.1080/10586458.2015.1072862

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, M.: Approximate inversion of the Black–Scholes formula using rational functions. Eur. J. Oper. Res. 185(2), 743–759 (2008). https://doi.org/10.1016/j.ejor.2006.12.028

    Article  MathSciNet  MATH  Google Scholar 

  12. Matusik, W., Pfister, H., Brand, M., McMillan, L.: A data-driven reflectance model. ACM Trans. Graph. 22(3), 759–769 (2003)

    Article  Google Scholar 

  13. Reddy, H., Khoo, I.H., Rajan, P.: 2-D symmetry: theory and filter design applications. IEEE Circuits Syst. Mag. Third Quarter, 4–33 (2003)

  14. Rusinkiewicz, S.M.: A new change of variables for efficient BRDF representation. In: In Eurographics Workshop on Rendering, pp. 11–22 (1998)

  15. Salazar Celis, O., Cuyt, A., Van Deun, J.: Symbolic and interval rational interpolation: the problem of unattainable data. In: Simos, T., Psihoyios, G., Tsitouras, C. (eds.) International conference on numerical analysis and applied mathematics, AIP Conference Proceedings, vol. 1048, pp. 466–469 (2008). https://doi.org/10.1063/1.2990963

  16. Salazar Celis, O., Cuyt, A., Verdonk, B.: Rational approximation of vertical segments. Numer. Alg. 45, 375–388 (2007). https://doi.org/10.1007/s11075-007-9077-3

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annie Cuyt.

Additional information

Communicated by Tom Lyche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuyt, A., Salazar Celis, O. Multivariate data fitting with error control. Bit Numer Math 59, 35–55 (2019). https://doi.org/10.1007/s10543-018-0721-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-018-0721-1

Keywords

Mathematics Subject Classification

Navigation