Skip to main content
Log in

On the spectral problem for trivariate functions

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

Using a variational approach applied to generalized Rayleigh functionals, we extend the concepts of singular values and singular functions to trivariate functions defined on a rectangular parallelepiped. We also consider eigenvalues and eigenfunctions for trivariate functions whose domain is a cube. For a general finite-rank trivariate function, we describe an algorithm for computing the canonical polyadic (CP) decomposition, provided that the CP factors are linearly independent in two variables. All these notions are computed using Chebfun3; a part of Chebfun for numerical computing with 3D functions. Application in finding the best rank-1 approximation of trivariate functions is investigated. We also prove that if the function is analytic and two-way orthogonally decomposable (odeco), then the CP values decay geometrically, and optimal finite-rank approximants converge at the same rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Unless in the exceptional case that the initial vectors correspond to a saddle point of (2.1) [25, Thm. 2].

  2. Relative to a tolerance to which (2.10) holds; machine epsilon by default.

  3. See e.g. [52] for an analogous discussion regarding eigenvalues of symmetric discrete tensors.

  4. The singular quadruplets for odeco tensors is fully studied in [44], which shows that the number of singular values grows rapidly with both the dimension and size, and that the singular vector tuples form a positive-dimensional variety. Extending such results to the continuous case is an interesting open problem.

  5. This is the function doublehelix from the Chebfun gallery.

References

  1. Atkinson, K., Han, W.: Theoretical Numerical Analysis. Springer, New York (2005)

    Book  Google Scholar 

  2. Bebendorf, M.: Adaptive cross approximation of multivariate functions. Constr. Approx. 34(2), 149–179 (2011)

    Article  MathSciNet  Google Scholar 

  3. Benson, A.R., Gleich, D.F., Lim, L.H.: The spacey random walk: a stochastic process for higher-order data. SIAM Rev. 59(2), 321–345 (2017)

    Article  MathSciNet  Google Scholar 

  4. Beylkin, G., Mohlenkamp, M.J.: Numerical operator calculus in higher dimensions. Proc. Natl. Acad. Sci. 99(16), 10246–10251 (2002)

    Article  MathSciNet  Google Scholar 

  5. Beylkin, G., Mohlenkamp, M.J.: Algorithms for numerical analysis in high dimensions. SIAM J. Sci. Comput. 26(6), 2133–2159 (2005)

    Article  MathSciNet  Google Scholar 

  6. Blekherman, G., Teitler, Z.: On maximum, typical and generic ranks. Math. Ann. 362(3–4), 1021–1031 (2015)

    Article  MathSciNet  Google Scholar 

  7. Bigoni, D., Engsig-Karup, A.P., Marzouk, Y.M.: Spectral tensor-train decomposition. SIAM J. Sci. Comput. 38(4), A2405–A2439 (2016)

    Article  MathSciNet  Google Scholar 

  8. Chevreuil, M., Lebrun, R., Nouy, A., Rai, P.: A least-squares method for sparse low rank approximation of multivariate functions. SIAM/ASA J. Uncertain. Quantif. 3(1), 897–921 (2015)

    Article  MathSciNet  Google Scholar 

  9. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. 1. CUP Archive, Cambridge (1965)

    MATH  Google Scholar 

  10. De Lathauwer, L.: A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization. SIAM J. Matrix Anal. Appl. 28(3), 642–666 (2006). (electronic)

    Article  MathSciNet  Google Scholar 

  11. De Lathauwer, L., Comon, P., De Moor, B., Vandewalle, J.: Higher-order power method. In: Nonlinear Theory and its Applications, NOLTA95, vol. 1 (1995)

  12. De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21, 1253–1278 (2000)

    Article  MathSciNet  Google Scholar 

  13. De Lathauwer, L., De Moor, B., Vandewalle, J.: Computation of the canonical decomposition by means of a simultaneous generalized Schur decomposition. SIAM J. Matrix Anal. Appl. 26(2), 295–327 (2004). (electronic)

    Article  MathSciNet  Google Scholar 

  14. Demmel, J.: Applied Numerical Linear Algebra. SIAM, Philadelphia (1997)

    Book  Google Scholar 

  15. De Silva, V., Lim, L.-H.: Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM J. Matrix Anal. Appl. 30(3), 1084–1127 (2008)

    Article  MathSciNet  Google Scholar 

  16. Domanov, I., Lathauwer, L.D.: Canonical polyadic decomposition of third-order tensors: reduction to generalized eigenvalue decomposition. SIAM J. Matrix Anal. Appl. 35(2), 636–660 (2014)

    Article  MathSciNet  Google Scholar 

  17. Driscoll, T.A., Hale, N., Trefethen, L.N.: Chebfun Guide. Pafnuty Publications, Oxford (2014)

    Google Scholar 

  18. Engel, E., Dreizler, R.M.: Density Functional Theory: An Advanced Course. Springer, New York (2011)

    Book  Google Scholar 

  19. Falcó, A., Hackbusch, W.: On minimal subspaces in tensor representations. Found. Comput. Math. 12(6), 765–803 (2012)

    Article  MathSciNet  Google Scholar 

  20. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins University Press, Baltimore (2013)

    MATH  Google Scholar 

  21. Gorodetsky, A.A., Karaman, S., Marzouk, Y.M.: Function-train: a continuous analogue of the tensor-train decomposition. arXiv:1510.09088v2 (2016)

  22. Hackbusch, W.: Tensor Spaces and Numerical Tensor Calculus, Springer Series in Computational Mathematics, vol. 42. Springer, Heidelberg (2012)

    Book  Google Scholar 

  23. Hashemi, B., Trefethen, L.N.: Chebfun in three dimensions. SIAM J. Sci. Comput. 39(5), C341–363 (2017)

    Article  MathSciNet  Google Scholar 

  24. Hille, E., Tamarkin, J.D.: On the characteristic values of linear integral equations. Acta Math. 57(1), 1–76 (1931)

    Article  MathSciNet  Google Scholar 

  25. Kofidis, E., Regalia, P.A.: On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM J. Matrix Anal. Appl. 23(3), 863–884 (2002)

    Article  MathSciNet  Google Scholar 

  26. Kolda, T.: Orthogonal tensor decompositions. SIAM J. Matrix Anal. Appl. 23(1), 243–255 (2001)

    Article  MathSciNet  Google Scholar 

  27. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  Google Scholar 

  28. Kolda, T.G., Mayo, J.R.: Shifted power method for computing tensor eigenpairs. SIAM J. Matrix Anal. Appl. 32(4), 1095–1124 (2011)

    Article  MathSciNet  Google Scholar 

  29. Kress, R.: Linear Integral Equations. Springer, Berlin (2014)

    Book  Google Scholar 

  30. Kruskal, J.B.: Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra Appl. 18(2), 95–138 (1977)

    Article  MathSciNet  Google Scholar 

  31. Kruskal, J.B.: Rank, decomposition, and uniqueness for 3-way and n-way arrays. In: Coppi, R., Bolasco, S. (eds.) Multiway Data Analysis, pp. 7–18. North-Holland, New York (1989)

    Google Scholar 

  32. Leurgans, S.E., Ross, R.T., Abel, R.B.: A decomposition for three-way arrays. SIAM J. Matrix Anal. Appl. 14(4), 1064–1083 (1993)

    Article  MathSciNet  Google Scholar 

  33. Li, W., Ng, M.K.: On the limiting probability distribution of a transition probability tensor. Linear Multilinear Algebra 62(3), 362–385 (2014)

    Article  MathSciNet  Google Scholar 

  34. Lickteig, T.: Typical tensorial rank. Linear Algebra Appl. 69, 95–120 (1985)

    Article  MathSciNet  Google Scholar 

  35. Lim, L.H.: Singular values and eigenvalues of tensors: a variational approach. In: Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP ‘05), pp. 129–132 (2005)

  36. Little, G., Reade, J.: Eigenvalues of analytic kernels. SIAM J. Math. Anal. 15, 133–136 (1984)

    Article  MathSciNet  Google Scholar 

  37. Mercer, J.: Functions of positive and negative type and their connection with the theory of integral equations. Philos. Trans. R. Soc. Lond. A 209, 415–446 (1909)

    Article  Google Scholar 

  38. Moler, Cleve B., Stewart, G.W.: An algorithm for generalized matrix eigenvalue problems. SIAM J. Numer. Anal. 10(2), 241–256 (1973)

    Article  MathSciNet  Google Scholar 

  39. Nakatsukasa, Y.: Finding a trivariate basis of rank-one functions. Chebfun example (2016). http://www.chebfun.org/examples/approx3/FindingRankOne.html

  40. Nakatsukasa, Y., Soma, T., Uschmajew, A.: Finding a low-rank basis in a matrix subspace. Math. Program. 162(1–2), 325–361 (2017)

    Article  MathSciNet  Google Scholar 

  41. Oseledets, I.V.: Constructive representation of functions in low-rank tensor formats. Constr. Approx. 37(1), 1–18 (2013)

    Article  MathSciNet  Google Scholar 

  42. Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40(6), 1302–1324 (2005)

    Article  MathSciNet  Google Scholar 

  43. Regalia, P.A., Kofidis, E.: The higher-order power method revisited: convergence proofs and effective initialization. In: Proceedings of the 2000 IEEE International Conference on Acoustics, Speech, and Signal. Processing (ICASSP ’00), vol. 5, pp. 2709–2712. IEEE (2000)

  44. Robeva, E., Seigal, A.: Singular vectors of orthogonally decomposable tensors. Linear Multilinear Algebra 65, 2457–2471 (2017)

    Article  MathSciNet  Google Scholar 

  45. Sanchez, E., Kowalski, B.R.: Tensorial resolution: a direct trilinear decomposition. J. Chemom. 4(1), 29–45 (1990)

    Article  Google Scholar 

  46. Schmidt, E.: Zur Theorie der linearen und nichtlinearen Integralgleichungen. I Teil. Entwicklung willkuerlichen Funktionen nach System vorgeschriebener. Math. Ann. 63, 433–476 (1907)

    Article  MathSciNet  Google Scholar 

  47. Schultz, T., Seidel, H.P.: Estimating crossing fibers: a tensor decomposition approach. IEEE Trans. Vis. Comput. Graph. 14(6), 1635–1642 (2008)

    Article  Google Scholar 

  48. Spatschek, R., Eidel, B.: Driving forces for interface kinetics and phase field models. Int. J. Solids Struct. 50(14), 2424–2436 (2013)

    Article  Google Scholar 

  49. Stakgold, I., Holst, M.J.: Green’s Functions and Boundary Value Problems. John Wiley & Sons, Hoboken (2011)

    Book  Google Scholar 

  50. Stewart, G.W.: On the early history of the singular value decomposition. SIAM Rev. 35(4), 551–566 (1993)

    Article  MathSciNet  Google Scholar 

  51. Strassen, V.: Rank and optimal computation of generic tensors. Linear Algebra Appl. 52, 645–685 (1983)

    Article  MathSciNet  Google Scholar 

  52. Sturmfels, B.: Tensors and their eigenvectors. Not. Am. Math. Soc. 63(6), 604–606 (2016)

    Article  MathSciNet  Google Scholar 

  53. Townsend, A.: Computing with functions in two dimensions. Ph.D. thesis, University of Oxford (2014)

  54. Townsend, A., Trefethen, L.N.: Continuous analogues of matrix factorizations. Proc. R. Soc. A 471(2173), 20140,585 (2015)

    Article  MathSciNet  Google Scholar 

  55. Trefethen, L.N.: Householder triangularization of a quasimatrix. IMA J. Numer. Anal. 30(4), 887–897 (2010)

    Article  MathSciNet  Google Scholar 

  56. Trefethen, L.N.: Approximation Theory and Approximation Practice. SIAM, Philadelphia (2013)

    MATH  Google Scholar 

  57. Uschmajew, A.: Regularity of tensor product approximations to square integrable functions. Constr. Approx. 34, 371–391 (2011)

    Article  MathSciNet  Google Scholar 

  58. Uschmajew, A.: A new convergence proof for the higher-order power method and generalizations. Pac. J. Optim. 11, 309–321 (2015)

    MathSciNet  MATH  Google Scholar 

  59. van Groesen, E.: Applied analytical method. In: Lecture Notes for Applied Analysis & Mathematical Physics (2001)

  60. Vannieuwenhoven, N., Nicaise, J., Vandebril, R., Meerbergen, K.: On generic nonexistence of the Schmidt–Eckart–Young decomposition for complex tensors. SIAM J. Matrix Anal. Appl. 35(3), 886–903 (2014)

    Article  MathSciNet  Google Scholar 

  61. Zhang, T., Golub, G.H.: Rank-one approximation to high order tensors. SIAM J. Matrix Anal. Appl. 23(2), 534–550 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Alex Townsend, André Uschmajew and Nick Vannieuwenhoven for helpful comments on the manuscript. We thank the referees for their comments and constructive suggestions. The work of the first author was in part supported by a grant from IPM (No. 96150051). The second author was supported by JSPS as an Overseas Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behnam Hashemi.

Additional information

Communicated by Daniel Kressner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemi, B., Nakatsukasa, Y. On the spectral problem for trivariate functions. Bit Numer Math 58, 981–1008 (2018). https://doi.org/10.1007/s10543-018-0710-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-018-0710-4

Keywords

Mathematics Subject Classification

Navigation