Skip to main content
Log in

Stability radii for real linear Hamiltonian systems with perturbed dissipation

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We study linear dissipative Hamiltonian (DH) systems with real constant coefficients that arise in energy based modeling of dynamical systems. We analyze when such a system is on the boundary of the region of asymptotic stability, i.e., when it has purely imaginary eigenvalues, or how much the dissipation term has to be perturbed to be on this boundary. For unstructured systems the explicit construction of the real distance to instability (real stability radius) has been a challenging problem. We analyze this real distance under different structured perturbations to the dissipation term that preserve the DH structure and we derive explicit formulas for this distance in terms of low rank perturbations. We also show (via numerical examples) that under real structured perturbations to the dissipation the asymptotical stability of a DH system is much more robust than for unstructured perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adhikari, B.: Backward perturbation and sensitivity analysis of structured polynomial eigenvalue problem. PhD thesis, Dept. of Math., IIT Guwahati, Assam, India (2008)

  2. Byers, R.: A bisection method for measuring the distance of a stable to unstable matrices. SIAM J. Sci. Stat. Comput. 9, 875–881 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dalsmo, M., van der Schaft, A.J.: On representations and integrability of mathematical structures in energy-conserving physical systems. SIAM J. Control Optim. 37, 54–91 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Davis, C., Kahan, W., Weinberger, H.: Norm-preserving dialations and their applications to optimal error bounds. SIAM J. Numer. Anal. 19, 445–469 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Freitag, M.A., Spence, A.: A Newton-based method for the calculation of the distance to instability. Linear Algebra Appl. 435(12), 3189–3205 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gantmacher, F.R.: Theory of Matrices, vol. 1. Chelsea, New York (1959)

    MATH  Google Scholar 

  7. Gohberg, I., Lancaster, P., Rodman, L.: Indefinite Linear Algebra and Applications. Birkhäuser, Basel (2006)

    MATH  Google Scholar 

  8. Golo, G., van der Schaft, A.J., Breedveld, P.C., Maschke, B.M.: Hamiltonian formulation of bond graphs. In: Rantzer, A., Johansson, R. (eds.) Nonlinear and Hybrid Systems in Automotive Control, pp. 351–372. Springer, Heidelberg (2003)

    Google Scholar 

  9. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  10. Gräbner, N., Mehrmann, V., Quraishi, S., Schröder, C., von Wagner, U.: Numerical methods for parametric model reduction in the simulation of disc brake squeal. Z. Angew. Math. Mech. 96, 1388–1405 (2016). doi:10.1002/zamm.201500217

    Article  Google Scholar 

  11. He, C., Watson, G.A.: An algorithm for computing the distance to instability. SIAM J. Matrix Anal. Appl. 20(1), 101–116 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hinrichsen, D., Pritchard, A.J.: Stability radii of linear systems. Syst. Control Lett. 7, 1–10 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hinrichsen, D., Pritchard, A.J.: Stability radius for structured perturbations and the algebraic Riccati equation. Syst. Control Lett. 8, 105–113 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hinrichsen, D., Pritchard, A.J.: Mathematical Systems Theory I. Modelling, State Space Analysis, Stability and Robustness. Springer, New York (2005)

    MATH  Google Scholar 

  15. Kahan, W., Parlett, B.N., Jiang, E.: Residual bounds on approximate eigensystems of nonnormal matrices. SIAM J. Numer. Anal. 19, 470–484 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mackey, D.S., Mackey, N., Tisseur, F.: Structured mapping problems for matrices associated with scalar products. Part I: Lie and Jordan algebras. SIAM J. Matrix Anal. Appl. 29(4), 1389–1410 (2008)

    Article  MATH  Google Scholar 

  17. Martins, N., Lima, L.: Determination of suitable locations for power system stabilizers and static var compensators for damping electromechanical oscillations in large scale power systems. IEEE Trans. Power Syst. 5, 1455–1469 (1990)

    Article  Google Scholar 

  18. Martins, N., Pellanda, P.C., Rommes, J.: Computation of transfer function dominant zeros with applications to oscillation damping control of large power systems. IEEE Trans. Power Syst. 22, 1657–1664 (2007)

    Article  Google Scholar 

  19. Maschke, B.M., van der Schaft, A.J., Breedveld, P.C.: An intrinsic Hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. J. Frankl. Inst. 329, 923–966 (1992)

    Article  MATH  Google Scholar 

  20. Mehl, C., Mehrmann, V., Sharma, P.: Stability radii for linear Hamiltonian systems with dissipation under structure-preserving perturbations. SIAM J. Matrix Anal. Appl. 37, 1625–1654 (2016)

  21. Ortega, R., van der Schaft, A.J., Mareels, Y., Maschke, B.M.: Putting energy back in control. Control Syst. Mag. 21, 18–33 (2001)

    Article  Google Scholar 

  22. Ortega, R., van der Schaft, A.J., Maschke, B.M., Escobar, G.: Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Qiu, L., Bernhardsson, B., Rantzer, A., Davison, E., Young, P., Doyle, J.: A formula for computation of the real stability radius. Automatica 31, 879–890 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rommes, J., Martins, N.: Exploiting structure in large-scale electrical circuit and power system problems. Linear Algebra Appl. 431, 318–333 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schiehlen, W.: Multibody Systems Handbook. Springer, Heidelberg (1990)

    Book  MATH  Google Scholar 

  26. van der Schaft, A.J.: Port-Hamiltonian systems: an introductory survey. In: Verona, J.L., Sanz-Sole, M., Verdura, J. (eds.) Proceedings of the International Congress of Mathematicians, vol. III, Invited Lectures, pp. 1339–1365, Madrid, Spain

  27. van der Schaft, A.J.: Port-Hamiltonian systems: network modeling and control of nonlinear physical systems. In: Advanced Dynamics and Control of Structures and Machines, CISM Courses and Lectures, vol. 444. Springer, New York (2004)

  28. van der Schaft, A.J., Maschke, B.M.: The Hamiltonian formulation of energy conserving physical systems with external ports. Arch. Elektron. Übertragungstech. 45, 362–371 (1995)

    Google Scholar 

  29. van der Schaft, A.J., Maschke, B.M.: Hamiltonian formulation of distributed-parameter systems with boundary energy flow. J. Geom. Phys. 42, 166–194 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. van der Schaft, A.J., Maschke, B.M.: Port-Hamiltonian systems on graphs. SIAM J. Control Optim. 51, 906–937 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Van Loan, C.F.: How near is a matrix to an unstable matrix? Contemp. Math. AMS 47, 465–479 (1984)

    Article  MathSciNet  Google Scholar 

  32. Veselić, K.: Damped Oscillations of Linear Systems: A Mathematical Introduction. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Mehrmann.

Additional information

Communicated by Daniel Kressner.

Supported by Einstein Stiftung Berlin through the Research Center Matheon Mathematics for key technologies in Berlin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehl, C., Mehrmann, V. & Sharma, P. Stability radii for real linear Hamiltonian systems with perturbed dissipation. Bit Numer Math 57, 811–843 (2017). https://doi.org/10.1007/s10543-017-0654-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-017-0654-0

Keywords

Mathematics Subject Classification

Navigation