Skip to main content

Advertisement

Log in

Uniformly accurate multiscale time integrators for second order oscillatory differential equations with large initial data

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We apply the modulated Fourier expansion to a class of second order differential equations which consists of an oscillatory linear part and a nonoscillatory nonlinear part, with the total energy of the system possibly unbounded when the oscillation frequency grows. We comment on the difference between this model problem and the classical energy bounded oscillatory equations. Based on the expansion, we propose the multiscale time integrators to solve the ODEs under two cases: the nonlinearity is a polynomial or the frequencies in the linear part are integer multiples of a single generic frequency. The proposed schemes are explicit and efficient. The schemes have been shown from both theoretical and numerical sides to converge with a uniform second order rate for all frequencies. Comparisons with popular exponential integrators in the literature are done.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ariel, G., Engquist, B., Kim, S., Lee, Y., Tsai, R.: A multiscale method for highly oscillatory dynamical systems using a Poincaré map type technique. J. Sci. Comput. 54, 247–268 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ariel, G., Engquist, B., Tsai, R.: A multiscale method for highly oscillatory ordinary differential equations with resonance. Math. Comput. 78, 929–956 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bao, W., Cai, Y., Zhao, X.: A uniformly accurate multiscale time integrator pseudospectral method for the Klein-Gordon equation in the nonrelativistic limit regime. SIAM J. Numer. Anal. 52, 2488–2511 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bao, W., Dong, X., Zhao, X.: An exponential wave integrator pseudospectral method for the Klein-Gordon-Zakharov system. SIAM J. Sci. Comput. 35, A2903–A2927 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bao, W., Dong, X., Zhao, X.: Uniformly correct multiscale time integrators for highly oscillatory second order differential equations. J. Math. Study 47, 111–150 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Bao, W., Zhao, X.: A uniformly accurate (UA) multiscale time integrator Fourier pseoduspectral method for the Klein-Gordon-Schrödinger equations in the nonrelativistic limit regime. Numer. Math. to appear (2016). doi:10.1007/s00211-016-0818-x

    Google Scholar 

  7. Bao, W., Zhao, X.: A uniformly accurate multiscale time integrator pseudospectral method for the Klein-Gordon-Zakharov system in the high-plasma-frequency limit regime. J. Comput. Phys. 327, 270–293 (2016)

    Article  MathSciNet  Google Scholar 

  8. Calvo, M.P., Chartier, Ph, Murua, A., Sanz-Serna, J.M.: A stroboscopic numerical method for highly oscillatory problems. Numer. Anal. Multiscale Comput., Lecture Notes in Computational Science and Engineering 82, 71–85 (2012)

  9. Calvo, M.P., Chartier, Ph, Murua, A., Sanz-Serna, J.M.: Numerical experiments with the stroboscopic method. Appl. Numer. Math. 61, 1077–1095 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Castella, F., Chartier, Ph, Méhats, F., Murua, A.: Stroboscopic averaging for the nonlinear Schrödinger equation. Found. Comput. Math. 15, 519–559 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chartier, Ph., Lemou, M., Méhats, F.: Highly-oscillatory evolution equations with multiple frequencies: averaging and numerics, preprint, hal-01281950 (2016)

  12. Chartier, Ph., Méhats, F., Thalhammer, M., Zhang, Y.: Convergence analysis of multi-revolution composition time-splitting pseudo-spectral methods for highly oscillatory differential equations of Schrödinger type, preprint (2016)

  13. Chartier, Ph, Makazaga, J., Murua, A., Vilmart, G.: Multi-revolution composition methods for highly oscillatory differential equations. Numer. Math. 128, 167–192 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chartier, Ph, Crouseilles, N., Lemou, M., Méhats, F.: Uniformly accurate numerical schemes for highly oscillatory Klein-Gordon and nonlinear Schrödinger equations. Numer. Math. 129, 211–250 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Condon, M., Deaño, A., Iserles, A.: On highly oscillatory problems arising in electronic engineering. ESAIM Math. Model. Numer. Anal. 43, 785–804 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Condon, M., Deaño, A., Iserles, A.: On second order differential equations with highly oscillatory forcing terms. Proc. R. Soc. A 466, 1809–1828 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Condon, M., Deaño, A., Gao, J., Iserles, A.: Asymptotic solvers for ordinary differential equations with multiple frequencies, University of Cambridge DAMTP Tech. Rep., NA2011/11 (2011)

  18. Condon, M., Iserles, A., Nørsett, S.P.: Differential equations with general highly oscillatory forcing terms. Proc. R. Soc. A 470 (2013). doi:10.1098/rspa.2013.0490

  19. Cohen, D.: Conservation properties of numerical integrators for highly oscillatory Hamiltonian systems. IMA J. Numer. Anal. 26, 34–59 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cohen, D., Gauckler, L.: One-stage exponential integrators for nonlinear Schrödinger equations over long times. BIT 52, 877–903 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cohen, D., Hairer, E., Lubich, Ch.: Numerical energy conservation for multi-frequency oscillatory differential equations. BIT Numer. Math. 45, 287–305 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cohen, D., Hairer, E., Lubich, Ch.: Conservation of energy, momentum and actions in numerical discretizations of non-linear wave equations. Numer. Math. 110, 113–143 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cohen, D., Hairer, E., Lubich, Ch.: Modulated Fourier expansions of highly oscillatory differential equations. Found. Comput. Math. 3, 327–345 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cohen, D.: Analysis and numerical treatment of highly oscillatory differential equations, Ph.D. thesis, Université de Genève (2004)

  25. Deuflhard, P.: A study of extrapolation methods based on multistep schemes without parasitic solutions. ZAMP 30, 177–189 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  26. Engquist, B., Tsai, Y.H.: Heterogeneous multiscale methods for stiff ordinary differential equations. Math. Comput. 74, 1707–1742 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Faou, E., Gauckler, L., Lubich, C.: Plane wave stability of the split-step Fourier method for the nonlinear Schrödinger equation. Forum Math. Sigma 2, e5 (2014)

    Article  MATH  Google Scholar 

  28. Faou, E., Gauckler, L., Lubich, C.: Sobolev stability of plane wave solutions to the cubic nonlinear Schrödinger equation on a torus. Comm. Partial Differ. Equ. 38, 1123–1140 (2013)

    Article  MATH  Google Scholar 

  29. Frénod, E., Hirstoaga, S., Sonnendrücker, E.: An exponential integrator for a highly oscillatory Vlasov equation. DCDS-S 8, 169–183 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Frénod, E., Hirstoaga, S., Lutz, M., Sonnendrücker, E.: Long time behaviour of an exponential integrator for a Vlasov-Poisson system with strong magnetic field. Commun. Comput. Phys. 16, 440–466 (2014)

    Article  MathSciNet  Google Scholar 

  31. Garcia-Archilla, B., Sanz-Serna, J.M., Skeel, R.D.: Long-time-step methods for oscillatory differential equations. SIAM J. Sci. Comput. 20, 930–963 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gautschi, W.: Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math. 3, 381–397 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  33. Gauckler, L.: Error analysis of trigonometric integrators for semilinear wave equations. SIAM J. Numer. Anal. 53, 1082–1106 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gauckler, L., Lubich, C.: Nonlinear Schrödinger equations and their spectral semi-discretizations over long times. Found. Comput. Math. 10, 141–169 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Gauckler, L., Lubich, C.: Splitting integrators for nonlinear Schrödinger equations over long times. Found. Comput. Math. 10, 275–302 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Grimm, V., Hochbruck, M.: Error analysis of exponential integrators for oscillatory second-order differential equations. J. Phys. A Math. Gen. 39, 5495–5507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Grimm, V.: On error bounds for the Gautschi-type exponential integrator applied to oscillatory second-order differential equations. Numer. Math. 100, 71–89 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. Grimm, V.: A note on the Gautschi-type method for oscillatory second-order differential equations. Numer. Math. 102, 61–66 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Hochbruck, M., Lubich, Ch.: A Gautschi-type method for oscillatory second-order differential equations. Numer. Math. 83, 403–426 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Hairer, E., Lubich, Ch.: Long-time energy conservation of numerical methods for oscillatory differential equations. SIAM J. Numer. Anal. 38, 414–441 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  42. Hairer, E., Lubich, Ch., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin (2006)

    MATH  Google Scholar 

  43. Hairer, E., Lubich, Ch.: On the energy disctribution in Fermi–Pasta–Ulam lattices. Arch. Ration. Mech. Anal. 205, 993–1029 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  45. Petzold, L.R., Jay, L.O., Yen, J.: Numerical solution of highly oscillatory ordinary differential equations. Acta Numer. 6, 437–483 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sanz-Serna, J.M.: Mollified impulse methods for highly oscillatory differential equations. SIAM J. Numer. Anal. 46, 1040–1059 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  47. Sanz-Serna, J.M.: Modulated Fourier expansions and heterogeneous multiscale methods. IMA J. Numer. Anal. 29, 595–605 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  48. Tao, M., Owhadi, H., Marsden, J.E.: Non-intrusive and structure preserving multiscale integration of stiff ODEs, SDEs and Hamiltonian systems with hidden slow dynamics via flow averaging. Multiscale Model. Simul. 8, 1269–1324 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wang, B., Iserles, A., Wu, X.: Arbitrary-order trigonometric Fourier collication methods for multi-frequency osciilatory systems. Found. Comput. Math. 16, 151–181 (2016)

    Article  MathSciNet  Google Scholar 

  50. Weinan, E.: Analysis of the heterogeneous multiscale method for ordinary differential equations. Commun. Math. Sci. 1, 423–436 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  51. Weinan, E., Engquist, B.: The heterogeneous multiscale methods. Commun. Math. Sci. 1, 87–132 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  52. Weinan, E., Engquist, B., Li, X., Ren, W., Vanden-Eijnden, E.: The heterogeneous multiscale method: a review. Commun. Comput. Phys. 2, 367–450 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported partially by the French ANR project MOONRISE ANR-14-CE23-0007-01 and partially by the Singapore A*STAR SERC PSF-Grant 1321202067. Part of the work was done the author was visiting the Institute for Mathematical Sciences at the National University of Singapore in 2015. The author would like to thank Prof. Weizhu Bao for stimulating discussion and thank the referees for their valuable suggestions that greatly improves the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofei Zhao.

Additional information

Communicated by David Cohen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X. Uniformly accurate multiscale time integrators for second order oscillatory differential equations with large initial data. Bit Numer Math 57, 649–683 (2017). https://doi.org/10.1007/s10543-017-0646-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-017-0646-0

Keywords

Mathematics Subject Classification

Navigation