Skip to main content

Advertisement

Log in

Role of metallothionein in cadmium traffic and toxicity in kidneys and other mammalian organs

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Metallothioneins are cysteine-rich, small metal-binding proteins present in various mammalian tissues. Of the four common metallothioneins, MT-1 and MT-2 (MTs) are expressed in most tissues, MT-3 is predominantly present in brain, whereas MT-4 is restricted to the squamous epithelia. The expression of MT-1 and MT-2 in some organs exhibits sex, age, and strain differences, and inducibility with a variety of stimuli. In adult mammals, MTs have been localized largely in the cell cytoplasm, but also in lysosomes, mitochondria and nuclei. The major physiological functions of MTs include homeostasis of essential metals Zn and Cu, protection against cytotoxicity of Cd and other toxic metals, and scavenging free radicals generated in oxidative stress. The role of MTs in Cd-induced acute and chronic toxicity, particularly in liver and kidneys, is reviewed in more details. In acute toxicity, liver is the primary target, whereas in chronic toxicity, kidneys are major targets of Cd. The intracellular MTs bind Cd ions and form CdMT. In chronic intoxication, Cd stimulates de novo synthesis of MTs; it is assumed that toxicity in the cells starts when loading with Cd ions exceeds the buffering capacity of intracellular MTs. CdMT, released from the Cd-injured organs, or when applied parenterally for experimental purposes, reaches the kidneys via circulation, where it is filtered, endocytosed in the proximal tubule cells, and degraded in lysosomes. Liberated Cd can immediately affect the cell structures and functions. The resulting proteinuria and CdMT in the urine can be used as biomarkers of tubular injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Apo-MT:

Metallothionein protein not complexed with metal

BBM:

Brush-border membrane

BLM:

Basolateral membrane

DMT-1:

Divalent metal transporter 1

GIF:

Growth inhibitory factor (MT-3)

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

MT:

Metallothionein

MTF-1:

Metalloregulatory transcription factor 1

MT-null mice:

MT-1 and MT-2 knock out mice

Oat:

Organic anion transporter

PT:

Proximal tubules

RE:

Response element

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

ZnMT:

CdMT or CuMT, metallothionein complexed with Zn, Cd or Cu, respectively

References

  • Abouhamed M, Gburek J, Liu W et al (2006) Divalent metal transporter 1 in the kidney proximal tubule is expressed in late endosomes/lysosomal membranes: implications for renal handling of protein-metal complexes. Am J Physiol Renal Physiol 290:F1525–F1533

    Article  PubMed  CAS  Google Scholar 

  • Abouhamed M, Wolff NA, Lee WK et al (2007) Knockdown of endosomal/lysosomal divalent metal transporter 1 by RNA interference prevents cadmium-metallothionein-1 cytotoxicity in renal proximal tubule cells. Am J Physiol Renal Physiol 293:F705–F712

    Article  PubMed  CAS  Google Scholar 

  • Ǻkesson A, Berglund M, Schütz A et al (2002) Cadmium exposure in pregnancy and lactation in relation to iron status. Am J Public Health 92:284–287

    Article  PubMed  Google Scholar 

  • Andrews GK (2000) Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochem Pharmacol 59:95–104

    Article  PubMed  CAS  Google Scholar 

  • Andrews GK, Adamson ED, Gedamu L (1984) The ontogeny of expression of murine metallothionein: comparison with the alpha-fetoprotein gene. Dev Biol 103:294–303

    Article  PubMed  CAS  Google Scholar 

  • Aschner M, West AK (2005) The role of MT in neurological disorders. J Alzheimers Dis 8:139–145

    PubMed  CAS  Google Scholar 

  • Aschner M, Cherian MG, Klaassen CD et al (1997) Metallothioneins in brain—the role in physiology and pathology. Toxicol Appl Pharmacol 142:229–242

    Article  PubMed  CAS  Google Scholar 

  • Baker TK, VanVooren HB, Smith WC et al (2003) Involvement of calcium channels in the sexual dimorphism of cadmium-induced hepatotoxicity. Toxicol Lett 137:185–192

    Article  PubMed  CAS  Google Scholar 

  • Bergendi L, Benes L, Durackova Z et al (1999) Chemistry, physiology and pathology of free radicals. Life Sci 65:1865–1874

    Article  PubMed  CAS  Google Scholar 

  • Berglund M, Ǻkesson A, Nermell B et al (1994) Intestinal absorption of dietary cadmium in women depends on body iron stores and fiber intake. Environ Health Perspect 102:1058–1066

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya MH (2009) Cadmium osteotoxicity in experimental animals: mechanisms and relationship to human exposures. Toxicol Appl Pharmacol 238:258–265

    Article  PubMed  CAS  Google Scholar 

  • Bittel D, Dalton T, Samson SLA et al (1998) The DNA binding activity of metal response element-binding transcriptional factor-1 is activated in vivo and in vitro by Zn, but not by other transition metals. J Biol Chem 273:7127–7133

    Article  PubMed  CAS  Google Scholar 

  • Blazka ME, Shaikh ZA (1991) Sex differences in hepatic and renal cadmium accumulation and metallothionein induction. Role of estradiol. Biochem Pharmacol 41:775–780

    Article  PubMed  CAS  Google Scholar 

  • Blazka ME, Nolan CV, Shaikh ZA (1988) Developmental and sex differences in cadmium distribution and metallothionein induction and localization. J Appl Toxicol 8:217–222

    Article  PubMed  CAS  Google Scholar 

  • Bobillier-Chaumont S, Maupoil V, Berthelot A (2006) Metallothionein induction in the liver, kidney, heart and aorta of cadmium and isoproterenol treated rats. J Appl Toxicol 26:47–55

    Article  PubMed  CAS  Google Scholar 

  • Bremner I (1987) Involvement of metallothionein in the hepatic metabolism of copper. J Nutr 117:19–29

    PubMed  CAS  Google Scholar 

  • Bridges CC, Zalups RK (2005) Molecular and ionic mimicry and the transport of toxic metals. Toxicol Appl Pharmacol 204:274–308

    Article  PubMed  CAS  Google Scholar 

  • Brookes PS, Yoon Y, Robotham JL et al (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287:C817–C833

    Article  PubMed  CAS  Google Scholar 

  • Casalino E, Sblano C, Landriscina C (1997) Enzyme activity alteration by cadmium administration to rats: the possibility of iron involvement in lipid peroxidation. Arch Biochem Biophys 346:171–179

    Article  PubMed  CAS  Google Scholar 

  • Chan HM, Cherian MG (1993) Ontogenic changes in hepatic metallothionein isoforms in prenatal and newborn rats. Biochem Cell Biol 71:133–140

    Article  PubMed  CAS  Google Scholar 

  • Chan HM, Zhu LF, Zhong R et al (1993) Nephrotoxicity in rats following liver transplantation from cadmium-exposed rats. Toxicol Appl Pharmacol 123:89–96

    Article  PubMed  CAS  Google Scholar 

  • Chang X, Jin T, Chen L et al (2009) Metallothionein I isoform mRNA expression in peripheral lymphocytes as a biomarker for occupational cadmium exposure. Exp Biol Med 234:666–672

    Article  CAS  Google Scholar 

  • Chen H, Carlson EC, Pellet L et al (2001) Overexpression of metallothionein in pancreatic beta cells reduces streptozotocin-induced DNA damage and diabetes. Diabetes 50:2040–2046

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Jin T, Huang R et al (2006a) Plasma metallothionein antibody and cadmium-induced renal dysfunction in an occupational population in China. Toxicol Sci 91:104–112

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Jin T, Huang B et al (2006b) Critical exposure level of cadmium for elevated urinary metallothionein–an occupational population study in China. Toxicol Appl Pharmacol 215:93–99

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Lei L, Jin T et al (2006c) Plasma metallothionein antibody, urinary cadmium, and renal dysfunction in a Chinese type 2 diabetic population. Diabetes Care 29:2682–2687

    Article  PubMed  CAS  Google Scholar 

  • Cherian MG (1979) Metabolism of orally administered cadmium-metallothionein in mice. Environ Health Perspect 28:127–130

    Article  PubMed  CAS  Google Scholar 

  • Cherian MG (1983) Absorption and tissue distribution of cadmium in mice after chronic feeding with cadmium chloride and cadmium-metallothionein. Bull Environm Contam Toxicol 30:33–36

    Article  CAS  Google Scholar 

  • Cherian MG (1994) The significance of the nuclear and cytoplasmic localization of metallothionein in human liver and tumor cells. Environ Health Perspect 102(Suppl. 3):131–135

    Article  PubMed  CAS  Google Scholar 

  • Cherian MG, Apostolova MD (2000) Nuclear localization of metallothionein during cell proliferation and differentiation. Cell Molec Biol 46:347–356

    CAS  Google Scholar 

  • Cherian MG, Kang YJ (2006) Metallothionein and liver regeneration. Exp Biol Med 231:138–144

    CAS  Google Scholar 

  • Cherian MG, Goyer RA, Delaquerriere-Richardson L (1976) Cadmium-metallothionein-induced nephropathy. Toxicol Appl Pharmacol 38:399–408

    Article  PubMed  CAS  Google Scholar 

  • Cherian MG, Goyer RA, Valberg LS (1978) Gastrointestinal absorption and organ distribution of oral cadmium chloride and cadmium-metallothioneine in mice. J Toxicol Environ Health 4:861–868

    Article  PubMed  CAS  Google Scholar 

  • Childers M, Eckel G, Himmel A et al (2007) A new model of cystic fibrosis pathology: lack of transport of glutathione and its thiocyanate conjugates. Med Hypothes 68:101–112

    Article  CAS  Google Scholar 

  • Choudhuri S, McKim JM, Klaassen CD (1992) Role of hepatic lysosomes in the degradation of metallothionein. Toxicol Appl Pharmacol 115:64–71

    Article  PubMed  CAS  Google Scholar 

  • Christensen EI, Verroust PJ, Nielsen R (2009) Receptor-mediated endocytosis in renal proximal tubule. Pflugers Arch Eur J Physiol 458:1039–1048

    Article  CAS  Google Scholar 

  • Cole SPC, Deeley RG (2006) Transport of glutathione and glutathione conjugates by MRP1. Trends Pharmacol Sci 27:438–446

    Article  PubMed  CAS  Google Scholar 

  • D’Amico G, Bazzi C (2003) Pathophysiology of proteinuria. Kidney Int 63:809–825

    Article  PubMed  Google Scholar 

  • Dalton T, Fu K, Enders GC et al (1996a) Analysis of the effects of overexpression of metallothionein-1 in transgenic mice on the reproductive toxicology of cadmium. Environ Health Perspect 104:68–76

    Article  PubMed  CAS  Google Scholar 

  • Dalton TP, Fu K, Palmiter RD et al (1996b) Transgenic mice that overexpress metallothionein-1 resist dietary zinc deficiency. J Nutr 126:825–833

    PubMed  CAS  Google Scholar 

  • Dalton TP, Li QW, Bittel D et al (1996c) Oxidative stress activates metal-responsive transcription factor-1 binding activity. Occupancy in vivo of metal response elements in the metallothionein-1 gene promotor. J Biol Chem 271:26233–26241

    Article  PubMed  CAS  Google Scholar 

  • Dalton TP, He L, Wang B et al (2005) Identification of mouse SLC39A8 as a transporter responsible for cadmium-induced toxicity in the testis. Proc Natl Acad Sci USA 102:3401–3406

    Article  PubMed  CAS  Google Scholar 

  • Danielson KG, Ohi S, Huang PC (1982a) Immunochemical detection of metallothionein in specific epithelial cells of rat organs. Proc Natl Acad Sci USA 79:2301–2304

    Article  PubMed  CAS  Google Scholar 

  • Danielson KG, Ohi S, Huang PC (1982b) Immunochemical localization of metallothionein in rat liver and kidney. J Histochem Cytochem 30:1033–1039

    PubMed  CAS  Google Scholar 

  • Davis SR, Cousins RJ (2000) Metallothionein expression in animals: a physiological perspective on function. J Nutr 130:1085–1088

    PubMed  CAS  Google Scholar 

  • Day FA, Funk AE, Brady FO (1984) In vivo and ex vivo displacement of zinc from metallothionein by cadmium and by mercury. Chem Biol Interact 50:159–174

    Article  PubMed  CAS  Google Scholar 

  • Devaux S, Maupoil V, Berthelot A (2009) Effects of cadmium on cardiac metallothionein induction and ischemia-reperfusion injury in rats. Can J Physiol Pharmacol 87:617–623

    Article  PubMed  CAS  Google Scholar 

  • Dorian C, Klaassen CD (1995) Protection by zinc-metallothionein (ZnMT) against cadmium-metallothionein-induced nephrotoxicity. Fundam Appl Toxicol 26:99–106

    Article  PubMed  CAS  Google Scholar 

  • Dorian C, Gattone VH II, Klaassen CD (1992) Accumulation and degradation of the protein moiety of cadmium-metallothionein (CdMT) in the mouse kidney. Toxicol Appl Pharmacol 117:242–248

    Article  PubMed  CAS  Google Scholar 

  • Dorian C, Gattone VH II, Klaassen CD (1995) Discrepancy between the nephrotoxic potencies of cadmium-metallothionein and cadmium chloride and the renal concentration of cadmium in the proximal convoluted tubules. Toxicol Appl Pharmacol 130:161–168

    Article  PubMed  CAS  Google Scholar 

  • Dubey RK, Jackson EK (2001) Estrogen-induced cardiorenal protection: potential cellular, biochemical, and molecular mechanisms. Am J Physiol Renal Physiol 280:F365–F388

    PubMed  CAS  Google Scholar 

  • Dudley RE, Gammal LM, Klaassen CD (1985) Cadmium-induced hepatic and renal injury in chronically exposed rats: likely role of hepatic cadmium-metallothionein in nephrotoxicity. Toxicol Appl Pharmacol 77:414–426

    Article  PubMed  CAS  Google Scholar 

  • Ebadi M, Iversen PL, Hao R et al (1995) Expression and regulation of brain metallothionein. Neurochem Int 27:1–22

    Article  PubMed  CAS  Google Scholar 

  • Edwards JR, Prozialeck WC (2009) Cadmium, diabetes and chronic kidney disease. Toxicol Appl Pharmacol 238:289–293

    Article  PubMed  CAS  Google Scholar 

  • Eisenhans B, Strugala GJ, Schafer SG (1997) Small-intestinal absorption of cadmium and the significance of mucosal metallothionein. Human Exp Toxicol 16:429–434

    Article  Google Scholar 

  • Erfurt C, Roussa E, Thevenod F (2003) Apoptosis by Cd2+ or CdMT in proximal tubule cells: different uptake routes and permissive role of endo/lysosomal CdMT uptake. Am J Physiol Cell Physiol 285:C1367–C1376

    PubMed  CAS  Google Scholar 

  • Feldman SL, Failla ML, Cousins RJ (1978) Degradation of rat liver metallothioneins in vitro. Biochim Biophys Acta 544:638–646

    PubMed  CAS  Google Scholar 

  • Folch J, Ortega A, Cabre A et al (1998) Urinary levels of metallothioneins and metals in subjects from a semiindustrialized area in Tarragona province of Spain. Biol Trace Elem Res 63:113–121

    Article  PubMed  CAS  Google Scholar 

  • Freisinger E (2008) Plant MTs—long neglected members of the metallothionein superfamily. Dalton Transact 47:6663–6675

    Article  CAS  Google Scholar 

  • Fujishiro H, Okugaki S, Kubota K et al (2009) The role of ZIP-8 down-regulation in cadmium-resistant metallothionein-null cells. J Appl Toxicol 29:367–373

    Article  PubMed  CAS  Google Scholar 

  • Garrett SH, Sens MA, Todd JH et al (1999) Expression of MT-3 protein in the human kidney. Toxicol Lett 105:207–214

    Article  PubMed  CAS  Google Scholar 

  • Garrett SH, Phillips V, Somji S et al (2002) Transient induction of metallothionein isoform 3 (MT-3), c-fos, c-jun, and c-myc in human proximal tubule cells exposed to cadmium. Toxicol Lett 126:69–80

    Article  PubMed  CAS  Google Scholar 

  • Ghio AJ, Piantadosi CA, Wang XC et al (2005) Divalent metal transporter-1 decreases metal-related injury in the lung. Am J Physiol Lung Cell Mol Physiol 289:L460–L467

    Article  PubMed  CAS  Google Scholar 

  • Goering PL, Klaasen CD (1984a) Resistance to cadmium-induced hepatotoxicity in immature rats. Toxicol Appl Pharmacol 74:321–329

    Article  PubMed  CAS  Google Scholar 

  • Goering PL, Klaassen CD (1984b) Tolerance to cadmium-induced toxicity depends on presynthesized metallothionein in liver. J Toxicol Environ Health 14:803–812

    Article  PubMed  CAS  Google Scholar 

  • Goering PL, Klaassen CD (1984c) Zinc-induced tolerance to cadmium hepatotoxicity. Toxicol Appl Pharmacol 74:299–307

    Article  PubMed  CAS  Google Scholar 

  • Gunes C, Heuchel R, Georgiev O et al (1998) Embryonic lethality and liver degeneration in mice lacking the metal-responsive transcriptional activator MTF-1. EMBO J 17:2846–2854

    Article  PubMed  CAS  Google Scholar 

  • Gunshin H, Mackenzie B, Berger UV et al (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482–488

    Article  PubMed  CAS  Google Scholar 

  • Habeebu SS, Liu J, Liu Y, Klaassen CD (2000a) Metallothionein-null mice are more sensitive than wild-type mice to liver injury induced by repeated exposure to cadmium. Toxicol Sci 55:223–232

    Article  PubMed  CAS  Google Scholar 

  • Habeebu SS, Liu J, Liu YP et al (2000b) Metallothionein-null mice are more susceptible than wild-type mice to chronic CdCl2-induced bone injury. Toxicol Sci 56:211–219

    Article  PubMed  CAS  Google Scholar 

  • Hamer DH (1986) Metallothionein. Ann Rev Biochem 55:913–951

    PubMed  CAS  Google Scholar 

  • Hao Q, Hong S-H, Maret W (2007) Lipid raft-dependent endocytosis of metallothionein in HepG2 cells. J Cell Physiol 210:428–435

    Article  PubMed  CAS  Google Scholar 

  • Haq F, Mahoney M, Koropatnick J (2003) Signalling events for metallothionein induction. Mutat Res 533:211–226

    PubMed  CAS  Google Scholar 

  • Hart BA, Voss GW, Willean CL (1989) Pulmonary tolerance to cadmium following cadmium aerosol pretreatment. Toxicol Appl Pharmacol 101:447–460

    Article  PubMed  CAS  Google Scholar 

  • Hart BA, Gong Q, Eneman JD et al (1995) In vivo expression of metallothionein in rat alveolar macrophages and type II epithelial cells following repeated cadmium aerosol exposure. Toxicol Appl Pharmacol 133:82–90

    Article  PubMed  CAS  Google Scholar 

  • Hart BA, Potts RJ, Watkin RD (2001) Cadmium adaptation in the lung–a double-edged sword. Toxicology 160(1–3):65–70

    Article  PubMed  CAS  Google Scholar 

  • Herak-Kramberger CM, Sabolic I (2001) The integrity of renal cortical brush-border and basolateral membrane vesicles is damaged in vitro by nephrotoxic heavy metals. Toxicology 156:139–147

    Article  PubMed  CAS  Google Scholar 

  • Herak-Kramberger CM, Brown D, Sabolic I (1998) Cadmium inhibits vacuolar H+-ATPase and endocytosis in rat kidney cortex. Kidney Int 53:1713–1726

    Article  PubMed  CAS  Google Scholar 

  • Herak-Kramberger CM, Sabolic I, Blanusa M et al (2000) Cadmium inhibits vacuolar H+-ATPase-mediated acidification in the rat epididymis. Biol Reprod 63:599–606

    Article  PubMed  CAS  Google Scholar 

  • Heuchel R, Radtke F, Georgiev O et al (1994) The transcription factor MTF-1 is essential for basal and heavy metal-induced metallothionein gene expression. EMBO J 13:2870–2875

    PubMed  CAS  Google Scholar 

  • Hoey JG, Garrett SH, Sens MA et al (1997) Expression of MT-3 mRNA in human kidney, proximal tubule cell cultures, and renal cell carcinoma. Toxicol Lett 92:149–160

    Article  PubMed  CAS  Google Scholar 

  • Hozumi I, Suzuki JS, Kanazawa H et al (2008) Metallothionein-3 is expressed in the brain and various peripheral organs of the rat. Neurosci Lett 438:54–58

    Article  PubMed  CAS  Google Scholar 

  • Huff J, Lunn RM, Waalkes MP et al (2007) Cadmium-induced cancers in animals and in humans. Int J Occup Environ Health 13:202–212

    PubMed  CAS  Google Scholar 

  • Hunziker PE, Kaur P, Wan M et al (1995) Primary structures of 7 metallothionenis from rabbit tissue. Biochem J 306:265–270

    PubMed  CAS  Google Scholar 

  • Hutton M (1983) Sources of cadmium in the environment. Ecotoxicol Environ Safety 7:9–24

    Article  PubMed  CAS  Google Scholar 

  • Iszard MB, Liu J, Liu YP et al (1995) Characterization of metallothionein-I-transgenic mice. Toxicol Appl Pharmacol 133:305–312

    Article  PubMed  CAS  Google Scholar 

  • Itoh S, Kim HW, Nakagawa O et al (2008) Novel role of antioxidant-1 (Atox1) as a copper-dependent transcription factor involved in cell proliferation. J Biol Chem 283:9157–9167

    Article  PubMed  CAS  Google Scholar 

  • Jacob C, Maret W, Vallee BL (1998) Control of zinc transfer between thionein, metallothionein, and zinc proteins. Proc Natl Acad Sci USA 95:3489–3494

    Article  PubMed  CAS  Google Scholar 

  • Jacquilett G, Barbier O, Cougnon M et al (2006) Zinc protects renal function during cadmium intoxication in the rat. Am J Physiol Renal Physiol 290:F127–F137

    Article  CAS  Google Scholar 

  • Järup L, Akesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238:201–208

    Article  PubMed  CAS  Google Scholar 

  • Järup L, Berglund M, Elinder CG et al (1998) Health effects of cadmium exposure—a review of the literature and a risk estimate. Scand J Work Environ Health 24(Suppl. 1):1–52

    PubMed  Google Scholar 

  • Jeong SH, Habeebu SSM, Klaassen CD (2000) Cadmium decreases gap junctional intercellular communications in mouse liver. Toxicol Sci 57:156–166

    Article  PubMed  CAS  Google Scholar 

  • Jiang LJ, Maret W, Vallee BL (1998a) The ATP-metallothionein complex. Proc Natl Acad Sci USA 95:9146–9149

    Article  PubMed  CAS  Google Scholar 

  • Jiang LJ, Maret W, Vallee BL (1998b) The glutathione redox couple modulates zinc transfer from metallothionein to zinc-depleted sorbitol dehydrogenase. Proc Natl Acad Sci USA 95:3483–3488

    Article  PubMed  CAS  Google Scholar 

  • Jin T, Nordberg GF, Nordberg M (1987) Resistance to acute nephrotoxicity induced by cadmium-metallothionein dependence on pretreatment with cadmium chloride. Pharmacol Toxicol 61:89–93

    Article  PubMed  CAS  Google Scholar 

  • Jin TY, Nordberg G, Sehlin J, Vesterberg O (1996) Protection against cadmium-metallothionein nephrotoxicity in streptozotocin-induced diabetic rats—role of increased metallo-thionein synthesis induced by streptozotocin. Toxicology 106:55–63

    Article  PubMed  CAS  Google Scholar 

  • Johnson MD, Kenney N, Stoica A et al (2003) Cadmium mimics the in vivo effects of estrogen in the uterus and mammary gland. Nature Med 9:1081–1084

    Article  PubMed  CAS  Google Scholar 

  • Joseph P (2009) Mechanisms of cadmium carcinogenesis. Toxicol Appl Pharmacol 238:272–279

    Article  PubMed  CAS  Google Scholar 

  • Kägi JHR, Vallee BL (1960) Metallothionein: a cadmium- and zinc-containing protein from equine renal cortex. J Biol Chem 235:3460–3465

    PubMed  Google Scholar 

  • Kang YJ (2006) Metallothionein redox cycle. Exp Biol Med 231:1459–1467

    CAS  Google Scholar 

  • Kang YJ, Li GQ, Saari JT (1999) Metallothionein inhibits ischemia-reperfusion injury in mouse heart. Am J Physiol Heart Circ Physiol 45:H993–H997

    Google Scholar 

  • Kazantzis G (2004) Cadmium, osteoporosis and calcium metabolism. Biometals 17:493–498

    Article  PubMed  CAS  Google Scholar 

  • Kenaga C, Cherian MG, Cox C et al (1996) Metallothionein induction and pulmonary responses to inhaled cadmium chloride in rats and mice. Fundam Appl Toxicol 30:204–212

    Article  PubMed  CAS  Google Scholar 

  • Kershaw WC, Klaassen (1992) Degradation and metal composition of hepatic isometallothioneins in rats. Toxicol Appl Pharmacol 112:24–31

    Article  PubMed  CAS  Google Scholar 

  • Khan I, Ahmad S, Thomas N (1998) Differential translation of the alpha-1 isoforms of L-type calcium channel in rat brain and other tissues. Biochem Molec Biol Int 45:895–904

    PubMed  CAS  Google Scholar 

  • Kher A, Meldrum KK, Wang MJ et al (2005) Cellular and molecular mechanisms of sex differences in renal ischemia-reperfusion injury. Cardiovasc Res 67:594–603

    Article  PubMed  CAS  Google Scholar 

  • Kim D, Garrett SH, Sens MA et al (2002) Metallothionein isoform 3 and proximal tubule vectorial active transport. Kidney Int 61:464–472

    Article  PubMed  CAS  Google Scholar 

  • Kimura T, Itoh N, Min KS et al (1998) Tissue accumulation of cadmium following oral administration to metallothionein-null mice. Toxicol Lett 99:85–90

    Article  PubMed  CAS  Google Scholar 

  • Klaassen CD, Lehman-McKeeman LD (1989) Regulation of the isoforms of metallothionein. Biol Trace Elem Res 21:119–129

    Article  PubMed  CAS  Google Scholar 

  • Klaassen CD, Liu J (1997) Role of metallothionein in cadmium-induced hepatotoxicity and nephrotoxicity. Drug Metab Rev 29:79–102

    Article  PubMed  CAS  Google Scholar 

  • Klaassen CD, Choudhuri S, McKim JM Jr et al (1994) In vitro and in vivo studies on degradation of metallothionein. Environ Health Perspect 102(Suppl 3):141–146

    Article  PubMed  CAS  Google Scholar 

  • Klaassen CD, Liu J, Choudhuri S (1999) Metallothionein: an intracellular protein to protect against cadmium toxicity. Annu Rev Pharmacol Toxicol 39:267–294

    Article  PubMed  CAS  Google Scholar 

  • Klaassen CD, Liu J, Diwan BA (2009) Metallothionein protection of cadmium toxicity. Toxicol Appl Pharmacol 238:215–220

    Article  PubMed  CAS  Google Scholar 

  • Klassen RB, Crenshaw K, Kozyraki R et al (2004) Megalin mediates renal uptake of heavy metal metallothionein complexes. Am J Physiol Renal Physiol 287:F393–F403

    Article  PubMed  CAS  Google Scholar 

  • Knepper MA, Pisitkun T (2007) Exosomes in urine: who would have thought.? Kidney Int 72:1043–1045

    Article  PubMed  CAS  Google Scholar 

  • Koh AS, Simmons-Willis TA, Pritchard JB et al (2002) Identification of a mechanism by which the methylmercury antidotes N-acetylcysteine and dimercaptopropanesulfonate enhance urinary metal excretion: Transport by the renal organic anion transporter-1. Mol Pharmacol 62:921–926

    Article  PubMed  CAS  Google Scholar 

  • Kourie JI (1998) Interaction of reactive oxygen species with ion transport mechanisms. Am J Physiol Cell Physiol 275:C1–C24

    CAS  Google Scholar 

  • Kuester RK, Waalkes MP, Goering PL et al (2002) Differential hepatotoxicity induced by cadmium in Fischer 344 and Sprague-Dawley rats. Toxicol Sci 65:151–159

    Article  PubMed  CAS  Google Scholar 

  • LaRochelle O, Gagne V, Charron J et al (2001) Phosphorylation is involved in the activation of metal-regulatory transcription factor 1 in response to metal ions. J Biol Chem 276:41879–41888

    Article  PubMed  CAS  Google Scholar 

  • Lash LH, Pull DA, Xu F et al (2007) Role of rat organic anion transporter 3 (Oat3) in the renal basolateral transport of glutathione. Chem Biol Interact 170:124–134

    Article  PubMed  CAS  Google Scholar 

  • Laskey `, Rehnberg GL, Laws SC et al (1984) Reproductive effects of low acute doses of cadmium chloride in adult male rats. Toxicol Appl Pharmacol 73:250–255

    Article  PubMed  CAS  Google Scholar 

  • Lee WK, Bork U, Gholamrezaei F, Thevenod F (2005) Cd2+-induced cytochrome c release in apoptotic proximal tubule cells: role of mitochondrial permeability transition pore and Ca2+ uniporter. Am J Physiol Renal Physiol 288:F27–F39

    Article  PubMed  CAS  Google Scholar 

  • Lehman LD, Klaassen CD (1986) Dosage-dependent disposition of cadmium administered orally to rats. Toxicol Appl Pharmacol 84:159–167

    Article  PubMed  CAS  Google Scholar 

  • Levadoux M, Mahon C, Beattie JH et al (1999) Nuclear import of metallothionein requires its mRNA to be associated with the perinuclear cytoskeleton. J Biol Chem 274:34961–34966

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Klaassen CD (1996) Absorption and distribution of cadmium in metallothionein-I transgenic mice. Fund Appl Toxicol 29:294–300

    Article  CAS  Google Scholar 

  • Liu J, Liu Y, Klaassen CD (1994) Nephrotoxicity of CdCl2 and Cd-metallothionein in cultured rat kidney proximal tubules and LLC-PK1 cells. Toxicol Appl Pharmacol 128:264–270

    Article  PubMed  CAS  Google Scholar 

  • Liu YP, Liu J, Iszard MB et al (1995) Transgenic mice that overexpress metallothionein-1 are protected from cadmium lethality and hepatotoxicity. Toxicol Appl Pharmacol 135:222–228

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Liu Y, Michalska AE et al (1996a) Distribution and retention of cadmium in metallothionein I and II null mice. Toxicol Appl Pharmacol 136:260–268

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Liu J, Palmiter R et al (1996b) Metallothionein-I-transgenic mice are not protected from acute cadmium-metallothionein-induced nephrotoxicity. Toxicol Appl Pharmacol 137:307–315

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Liu Y, Habeebu SS et al (1998) Susceptibility of MT-null mice to chronic CdCl2-induced nephrotoxicity indicates that renal injury is not mediated by the CdMT complex. Toxicol Sci 46:197–203

    PubMed  CAS  Google Scholar 

  • Liu J, Liu YP, Habeebu SS et al (1999a) Metallothionein-null mice are highly susceptible to the hematotoxic and immunotoxic effects of chronic CdCl2 exposure. Toxicol Appl Pharmacol 159:98–108

    Article  PubMed  CAS  Google Scholar 

  • Liu YP, Liu J, Habeebu SM et al (1999b) Metallothionein protects against the nephrotoxicity produced by chronic CdMT exposure. Toxicol Sci 50:221–227

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Corton C, Dix DJ et al (2001a) Genetic background but not metallothionein phenotype dictates sensitivity to cadmium-induced testicular injury in mice. Toxicol Appl Pharmacol 176:1–9

    Article  PubMed  CAS  Google Scholar 

  • Liu YP, Liu J, Klaassen CD (2001b) Metallothionein-null and wild-type mice show similar cadmium absorption and tissue distribution following oral cadmium administration. Toxicol Appl Pharmacol 175:253–259

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Cheng ML, Yang Q et al (2007) Blood metallothionein transcript as a biomarker for metal sensitivity: low blood metallothionein transcripts in arsenicosis patients from Guizhou, China. Environ Health Perspect 115:1101–1106

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Qu W, Kadiiska MB (2009) Role of oxidative stress in cadmium toxicity and carcinogenicity. Toxicol Appl Pharmacol 238:209–214

    Article  PubMed  CAS  Google Scholar 

  • Lu H, Jin TY, Nordberg G et al (2005) Metallothionein gene expression in peripheral lymphocytes and renal dysfunction in a population environmentally exposed to cadmium. Toxicol Appl Pharmacol 206:150–156

    Article  PubMed  CAS  Google Scholar 

  • Lynes MA, Zaffuto K, Unfricht DW et al (2006) The physiological roles of extracellular metallothionein. Exp Biol Med 231:1548–1554

    CAS  Google Scholar 

  • Maret W (2003) Cellular zinc and redox states converge in the metallothionein/thionein pair. J Nutr 133:1460S–1462S

    PubMed  CAS  Google Scholar 

  • Marshansky V, Bourgoin S, Londono I et al (1997) Receptor-mediated endocytosis in kidney proximal tubules: recent advances and hypothesis. Electrophoresis 18:2661–2676

    Article  PubMed  CAS  Google Scholar 

  • Massany P, Lukac N, Uhrin V et al (2007) Female reproductive toxicology of cadmium. Acta Biol Hungar 58:287–299

    Article  Google Scholar 

  • Masters BA, Kelly E, Quaife CJ et al (1994) Targeted disruption of metallothionein I and II genes increase sensitivity to cadmium. Proc Natl Acad Sci USA 91:584–588

    Article  PubMed  CAS  Google Scholar 

  • McKenna IM, Bare RM, Waalkes MP (1996) Metallothionein gene expression in testicular interstitial cells and liver of rats treated with cadmium. Toxicology 107:121–130

    Article  PubMed  CAS  Google Scholar 

  • McKenna IM, Gordon T, Chen LC et al (1998) Expression of metallothionein protein in the lungs of Wistar rats and C57 and DBA mice exposed to cadmium oxide fumes. Toxicol Appl Pharmacol 153:169–178

    Article  PubMed  CAS  Google Scholar 

  • McKim JM Jr, Choudhuri S, Klaassen CD (1992) In vitro degradation of apo-, zinc-, and cadmium-metallothionein by cathepsin B, C, and D. Toxicol Appl Pharmacol 116:117–124

    Article  PubMed  CAS  Google Scholar 

  • Mendez-Armenta M, Rios C (2007) Cadmium neurotoxicity. Environ Toxicol Pharmacol 23:350–358

    Article  CAS  Google Scholar 

  • Mesna OJ, Wilhelmsen TW, Andersen RA (2000) Correlations between cadmium treatment, oxygen uptake and metallothionein response in liver and kidney from two mice strains. Comp Biochem Physiol B 125:21–27

    Article  PubMed  CAS  Google Scholar 

  • Mididoddi S, McGuirt JP, Sens MA et al (1996) Isoform-specific expression of metallothionein mRNA in the developing and adult human kidney. Toxicol Lett 85:17–27

    Article  PubMed  CAS  Google Scholar 

  • Miles AT, Hawksworth GM, Beattie JH et al (2000) Induction, regulation, degradation, and biological significance of mammalian metallothioneins. Crit Rev Biochem Mol Biol 35:35–70

    Article  PubMed  CAS  Google Scholar 

  • Milnerwicz H, Jablonowska M, Bizon A (2009) Change of zinc, copper, and metallothionein concentrations and the copper-zinc superoxide dismutase activity in patients with pancreatitis. Pancreas 38:681–688

    Article  CAS  Google Scholar 

  • Min KS, Hatta A, Onosaka S et al (1987) Protective role of renal metallothionein against Cd nephrotoxicity in rats. Toxicol Appl Pharmacol 88:294–301

    Article  PubMed  CAS  Google Scholar 

  • Misra RR, Crance KA, Bare RM et al (1997) Lack of correlation between the inducibility of metallothionein mRNA and metallothionein protein in cadmium-exposed rodents. Toxicology 117:99–109

    Article  PubMed  CAS  Google Scholar 

  • Moffatt P, Denizeau F (1997) Metallothionein in physiological and pathophysiological processes. Drug Metab Rev 29:261–307

    Article  PubMed  CAS  Google Scholar 

  • Moffatt P, Seguin C (1998) Expression of the gene encoding metallothionein-3 in organs of the reproductive system. DNA Cell Biol 17:501–510

    Article  PubMed  CAS  Google Scholar 

  • Moltedo O, Verde C, Capasso A et al (2000) Zinc transport and metallothionein secretion in the intestinal human cell line Caco-2. J Biol Chem 275:31819–31825

    Article  PubMed  CAS  Google Scholar 

  • Nagano T, Itoh N, Ebisutani C et al (2000) The transport mechanism of metallothionein is different from that of classical NLS-bearing protein. J Cell Physiol 185:440–446

    Article  PubMed  CAS  Google Scholar 

  • Nickel W (2003) The mystery of nonclassical protein secretion. A current view on cargo proteins and potential export routes. Eur J Biochem 270:2109–2119

    Article  PubMed  CAS  Google Scholar 

  • Nielson KB, Atkin CL, Winge DR (1985) Distinct metal-binding configurations in metallothionein. J Biol Chem 260:5342–5350

    PubMed  CAS  Google Scholar 

  • Nishimura H, Nishimura N, Tohyama C (1989a) Immunohistochemical localization of metallothionein in developing rat tissues. J Histochem Cytochem 37:715–722

    PubMed  CAS  Google Scholar 

  • Nishimura N, Nishimura H, Tohyama C (1989b) Localization of metallothionein in female reproductive organs of rat and Guinea pig. J Histochem Cytochem 37:1601–1607

    PubMed  CAS  Google Scholar 

  • Nomiyama K (1980) Recent progress and perspectives in cadmium health effects studies. Sci Total Environ 14:199–232

    Article  PubMed  CAS  Google Scholar 

  • Nomiyama K, Nomiyama H, Kameda N (1998) Plasma cadmium-metallothionein, a biological exposure for cadmium-induced renal dysfunction, based on the mechanism of its action. Toxicology 129:157–168

    Article  PubMed  CAS  Google Scholar 

  • Nordberg GF (1975) Effects of long-term cadmium exposure on the seminal vesicles of mice. J Reprod Fert 45:165–167

    Article  CAS  Google Scholar 

  • Nordberg M (1998) Metallothionenis: historical review and state of knowledge. Talanta 46:243–254

    Article  PubMed  CAS  Google Scholar 

  • Nordberg GF (2009) Historical perspectives on cadmium toxicology. Toxicol Appl Pharmacol 238:192–200

    Article  PubMed  CAS  Google Scholar 

  • Nordberg M, Nordberg GF (2000) Toxicological aspects of metallothionein. Cell Mol Biol 46:451–463

    PubMed  CAS  Google Scholar 

  • Nordberg M, Nordberg GF (2009) Metallothioneins: historical development and overview. Met Ions Life Sci 5:1–29

    Article  CAS  Google Scholar 

  • Nordberg GF, Garvey JS, Chang CC (1982) Metallothionein in plasma and urine of cadmium workers. Environ Res 28:179–182

    Article  PubMed  CAS  Google Scholar 

  • Oda N, Sogawa CA, Sogawa N et al (2001) Metallothionein expression and localization in rat bone tissue after cadmium injection. Toxicol Lett 123:143–150

    Article  PubMed  CAS  Google Scholar 

  • Ogra Y, Suzuki KT (2000) Nuclear trafficking of metallothionein. Possible mechanisms and current knowledge. Cell Mol Biol 46:357–365

    PubMed  CAS  Google Scholar 

  • Oh SH, Deagen JT, Whanger PD et al (1978) Biological function of metallothionein. V. Its induction in rats by various stresses. Am J Physiol 234:E282–E285

    PubMed  CAS  Google Scholar 

  • Okamoto T, Jeong SY, Takahashi Y et al (2001) Expression of the alpha 1D subunit of the L-type voltage gated calcium channel in human liver. Int J Mol Med 8:413–416

    PubMed  CAS  Google Scholar 

  • Olsson IM, Bensryd I, Lundh T et al (2002) Cadmium in blood and urine—impact of sex, age, dietary intake, iron status, and former smoking—association of renal effects. Environ Health Perspect 110:1185–1190

    Article  PubMed  CAS  Google Scholar 

  • Omarova A, Phillips CJC (2007) A meta-analysis of literature data relating to the relationship between cadmium intake and toxicity indicators in humans. Environ Res 103:432–440

    Article  PubMed  CAS  Google Scholar 

  • Onosaka S, Cherian MG (1981) Induced synthesis of metallothionein in various tissues of rats in response to metals. I. Repeated cadmium injection. Toxicology 22:91–101

    Article  PubMed  CAS  Google Scholar 

  • Onosaka S, Min KS, Fujita Y et al (1988) High concentration of pancreatic metallothionein in normal mice. Toxicology 50:27–35

    Article  PubMed  CAS  Google Scholar 

  • Padanilam BJ (2003) Cell death induced by acute renal injury: a perspective on the contributions of apoptosis and necrosis. Am J Physiol Renal Physiol 284:F608–F627

    PubMed  CAS  Google Scholar 

  • Palmiter RD (1987) Molecular biology of metallothionein gene expression. Exp Suppl 52:63–80

    CAS  Google Scholar 

  • Palmiter RD (1994) Regulation of metallothionein genes by heavy metals appears to be mediated by a zinc-sensitive inhibitor that interacts with a constitutively active transcription factor, MTF-1. Proc Natl Acad Sci USA 91:1219–1223

    Article  PubMed  CAS  Google Scholar 

  • Palmiter RD (1998) The elusive function of metallothioneins. Proc Natl Acad Sci USA 95:8428–8430

    Article  PubMed  CAS  Google Scholar 

  • Palmiter RD, Findley SD, Whitmore TE et al (1992) MT-III, a brain-specific member of the metallothionein gene family. Proc Natl Acad Sci USA 89:6333–6337

    Article  PubMed  CAS  Google Scholar 

  • Palumaa P, Eriste E, Njunkova O et al (2002) Brain-specific metallothionein-3 has higher metal-binding capacity than ubiquitous metallothioneins and binds metals noncooperatively. Biochemistry 41:6158–6163

    Article  PubMed  CAS  Google Scholar 

  • Palumaa P, Eriste E, Kruusel K et al (2003) Metal binding to brain-specific metallothionein-3 studied by electrospray ionization mass spectrometry. Cell Mol Biol 49:763–768

    PubMed  CAS  Google Scholar 

  • Pattanaik A, Shaw CF III, Petering DH et al (1994) Basal metallothionein in tumors: widespread presence of apoprotein. J Inorg Biochem 54:91–105

    Article  PubMed  CAS  Google Scholar 

  • Perkins DJ (1961) Studies on the interaction of zinc, cadmium and mercury ions with native and chemically modified human serum albumin. Biochem J 80:668–672

    PubMed  CAS  Google Scholar 

  • Petering DH, Zhu J, Krezoski S et al (2006) Apo-metallothionein emerging as a major player in the cellular activities of metallothionein. Exp Biol Med 231:1528–1534

    CAS  Google Scholar 

  • Petering DH, Krezoski S, Tabatabai NM (2009) Metallothionein toxicology: metal ion trafficking and cellular protection. Met Ions Life Sci 5:353–397

    Article  CAS  Google Scholar 

  • Pham TND, Segui JA, Fortin C et al (2004) Cadmium uptake in rat hepatocytes in relation to speciation and to complexation with metallothionein and albumin. J Cell Physiol 201:320–330

    Article  PubMed  CAS  Google Scholar 

  • Powel SR (2000) The antioxidant properties of zinc. J Nutr 130:1447S–1454S

    Google Scholar 

  • Prozialeck WC (2000) Evidence that E-cadherin may be a target for cadmium toxicity in epithelial cells. Toxicol Appl Pharmacol 164:231–249

    Article  PubMed  CAS  Google Scholar 

  • Prozialeck WC, Wellington DR, Lamar PC (1993) Comparison of the cytotoxic effects of cadmium chloride and cadmium-metallothionein in LLC-PK1 cells. Life Sci 53:PL337–PL342

    Article  PubMed  CAS  Google Scholar 

  • Prozialeck WC, Lamar PC, Lynch SA (2003) Cadmium alters the localization of N-cadherin, E-cadherin, and beta-catenin in the proximal tubule epithelium. Toxicol Appl Pharmacol 189:180–195

    Article  PubMed  CAS  Google Scholar 

  • Qu W, Fuquay R, Sakurai T et al (2006) Acquisition of apoptotic resistance in cadmium-induced malignant transformation: specific perturbation of JNK signal transduction pathway and associated metallothionein overexpression. Mol Carcinog 45:561–571

    Article  PubMed  CAS  Google Scholar 

  • Quaife CJ, Findley SD, Erickson JC et al (1994) Induction of a new metallothionein isoform (MT-IV) occurs during differentiation of stratified squamous epithelia. Biochemistry 33:7250–7259

    Article  PubMed  CAS  Google Scholar 

  • Rahman MT, Vandingenen A, DeLey M (2000) Metallothionein biosynthesis in human RBC precursors. Cell Physiol Biochem 10:237–242

    Article  PubMed  CAS  Google Scholar 

  • Rana SVS (2008) Metals and apoptosis: recent developments. J Trace Elem Med Biol 22:262–284

    Article  PubMed  CAS  Google Scholar 

  • Regnier A, Dannhoffer L, Blouquit-Laye S et al (2008) Expression of cystic fibrosis transmembrane conductance regulator in the human distal lung. Human Pathol 39:368–376

    Article  CAS  Google Scholar 

  • Ren XY, Zhou Y, Zhang HP et al (2003a) Metallothionein gene expression under different time in testicular Sertoli and spermatogenic cells of rats treated with cadmium. Reprod Toxicol 17:219–227

    Article  PubMed  CAS  Google Scholar 

  • Ren XY, Zhou Y, Zhang JP et al (2003b) Expression of metallothionein gene at different time in testicular intersticial cells and liver of rats treated with cadmium. World J Gastroenterol 9:1554–1558

    PubMed  CAS  Google Scholar 

  • Roels H, Lauwerys R, Buchet JP et al (1983) Significance of urinary metallothionein in workers exposed to cadmium. Int Arch Occup Environ Health 52:159–166

    Article  PubMed  CAS  Google Scholar 

  • Romero-Isart N, Vašak M (2002) Advances in the structure and chemistry of metallothioneins. J Inorg Biochem 88:388–396

    Article  PubMed  CAS  Google Scholar 

  • Sabolic I (2006) Common mechanisms in nephropathy induced by toxic metals. Nephron Physiol 104:107–114

    Article  CAS  Google Scholar 

  • Sabolic I, Herak-Kramberger CM, Brown D (2001) Subchronic cadmium treatment affects the abundance and arrangement of cytoskeletal proteins in rat renal proximal tubule cells. Toxicology 165:205–216

    Article  PubMed  CAS  Google Scholar 

  • Sabolic I, Ljubojevic M, Herak-Kramberger CM et al (2002) Cd-MT causes endocytosis of brush-border transporters in rat renal proximal tubules. Am J Physiol Renal Physiol 283:F1389–F1402

    PubMed  CAS  Google Scholar 

  • Sabolic I, Herak-Kramberger CM, Antolovic R et al (2006) Loss of basolateral invaginations in proximal tubules of cadmium-intoxicated rats is independent of microtubules and clathrin. Toxicology 218:149–163

    Article  PubMed  CAS  Google Scholar 

  • Sagiura T, Nakamura H (1994) Metallothionein in platelets. Int Arch Allerg Immunol 103:341–348

    Article  Google Scholar 

  • Samson SLA, Gedamu L (1998) Molecular analyses of metallothionein gene regulation. Prog Nucleic Acid Res Mol Biol 59:257–288

    Article  PubMed  CAS  Google Scholar 

  • Shaikh ZA, Hirayama K (1979) Metallothionein in the extracellular fluids as an index of cadmium toxicity. Environ Health Perspect 28:267–271

    Article  PubMed  CAS  Google Scholar 

  • Shaikh ZA, Jordan SA, Tewari PC (1993) Cadmium disposition and metallothionein induction in mice—strain-dependent, sex-dependent, age-dependent and dose-dependent differences. Toxicology 80:51–70

    Article  PubMed  CAS  Google Scholar 

  • Shaikh ZA, Vu TT, Zaman K (1999) Oxidative stress as a mechanism of chronic cadmium-induced hepatotoxicity and renal toxicity and protection by antioxidants. Toxicol Appl Pharmacol 154:256–263

    Article  PubMed  CAS  Google Scholar 

  • Shimada A, Yanagida M, Umemura T (1997) An immunohistochemical study on the tissue-specific localization of metallothionein in dogs. J Comp Pathol 116:1–11

    Article  PubMed  CAS  Google Scholar 

  • Shiraishi N, Hochadel JF, Coogan TP et al (1995) Sensitivity to cadmium-induced genotoxicity in rat testicular cells is associated with minimal expression of the metallothionein gene. Toxicol Appl Pharmacol 130:229–236

    Article  PubMed  CAS  Google Scholar 

  • Simons TJB (1991) Intracellular free zinc and zinc buffering in human red blood cells. J Membr Biol 123:63–71

    Article  PubMed  CAS  Google Scholar 

  • Siu ER, Mruk DD, Porto CS et al (2009) Cadmium-induced testicular injury. Toxicol Appl Pharmacol 238:240–249

    Article  PubMed  CAS  Google Scholar 

  • Smirnova IV, Bittel DC, Ravindra R et al (2000) Zinc and cadmium can promote rapid nuclear translocation of metal response element-binding transcription factor-1. J Biol Chem 275:9377–9384

    Article  PubMed  CAS  Google Scholar 

  • Smith CP, Thevenod F (2009) Iron transport and the kidney. Biochim Biophys Acta 1790:724–730

    PubMed  CAS  Google Scholar 

  • Solaiman D, Jonah MM, Miyazaki W et al (2001) Increased metallothionein in mouse liver, kidneys, and duodenum during lactation. Toxicol Sci 60:184–192

    Article  PubMed  CAS  Google Scholar 

  • Somji S, Garrett SH, Sens MA et al (2004) Expression of metallothionein isoform 3 (MT-3) determines the choice between apoptotic or necrotic cell death in Cd2+-exposed human proximal tubule cells. Toxicol Sci 80:358–366

    Article  PubMed  CAS  Google Scholar 

  • Somji S, Zhou XD, Garrett SH et al (2006) Urothelial cells malignantly transformed by exposure to cadmium (Cd2+) and arsenite (As3+) have increased resistance to Cd2+ and As3+-induced cell death. Toxicol Sci 94:293–301

    Article  PubMed  CAS  Google Scholar 

  • Souza V, Bucio L, Gutierrez-Ruiz MC (1997) Cadmium uptake by a human hepatic cell line (WRL-68 cells). Toxicology 120:215–220

    Article  PubMed  CAS  Google Scholar 

  • Stillman MJ (1995) Metallothioneins. Coordin Chem Rev 144:461–511

    Article  CAS  Google Scholar 

  • Sugihira N, Tohyama C, Murakami M et al (1986) Significance of increase in urinary metallothionein of rats repeatedly exposed to cadmium. Toxicology 41:1–9

    Article  PubMed  CAS  Google Scholar 

  • Suhy DA, Simon KD, Linzer DIH et al (1999) Metallothionein is part of a zinc-scavenging mechanism for cell survival under conditions of extreme zinc deprivation. J Biol Chem 274:9183–9192

    Article  PubMed  CAS  Google Scholar 

  • Susin SA, Zamzami N, Kroemer G (1998) Mitochondria as regulators of apoptosis: doubt no more. Biochim Biophys Acta 1366:151–165

    Article  PubMed  CAS  Google Scholar 

  • Szczurek EI, Bjornsson CS, Taylor CG (2001) Dietary zinc deficiency and repletion modulate metallothionein immunolocalization and concentration in small intestine and liver of rats. J Nutr 131:2132–2138

    PubMed  CAS  Google Scholar 

  • Szczurek EI, Bjornsson CS, Noto AD et al (2009) Renal metallothionein responds rapidly and site specifically to zinc repletion in growing rats. J Trace Elem Med Biol 23:176–182

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y, Ogra Y, Suzuki KT (2005) Nuclear trafficking of metallothionein requires oxidation of a cytosolic partner. J Cell Physiol 202:563–569

    Article  PubMed  CAS  Google Scholar 

  • Takano H, Inoue K, Yanagisawa R et al (2004) Protective role of metallothionein in acute lung injury induced by bacterial endotoxin. Thorax 59:1057–1072

    Article  PubMed  CAS  Google Scholar 

  • Tang W, Shaikh ZA (2001) Renal cortical mitochondrial dysfunction upon cadmium metallothionein administration to Sprague-Dawley rats. J Toxicol Environ Health A 63:221–235

    Article  PubMed  CAS  Google Scholar 

  • Tapia L, Gonzales-Aguero M, Cisternas MF et al (2004) Metallothionein is crucial for safe intracellular copper storage and cell survival at normal and supra-physiological exposure levels. Biochem J 378:617–624

    Article  PubMed  CAS  Google Scholar 

  • Taylor BA, Heiniger HJ, Meier H (1973) Genetic analysis of resistance to cadmium-induced testicular damage in mice. Proc Soc Exp Biol Med 143:629–633

    PubMed  CAS  Google Scholar 

  • Theocharis SE, Margeli AP, Koutselinis A (2003) Metallothionein: a multifunctional protein from toxicity to cancer. Int J Biol Markers 18:162–169

    PubMed  CAS  Google Scholar 

  • Thevenod F (2003) Nephrotoxicity and the proximal tubule. Insights from cadmium. Nephron Physiol 93:87–93

    Article  CAS  Google Scholar 

  • Thevenod F (2009) Cadmium and signalling cascades: to be or not to be. Toxicol Appl Pharmacol 238:221–239

    Article  PubMed  CAS  Google Scholar 

  • Thevenod F (2010) Catch me if you can! Novel aspects of cadmium transport in mammalian cells. Biometals. doi:10.1007/s10534-010-9309-1

    Google Scholar 

  • Thijssen S, Maringwa J, Faes C et al (2007) Chronic exposure of mice to environmentally relevant, low doses of cadmium leads to early renal damage, not predicted by blood or urine cadmium levels. Toxicology 229:145–156

    Article  PubMed  CAS  Google Scholar 

  • Tohyama C, Shaikh ZA (1981) Metallothionein in plasma and urine of cadmium-exposed rats determined by a single-antibody radioimmunoassay. Fundam Appl Toxicol 1:1–7

    PubMed  CAS  Google Scholar 

  • Tohyama C, Shaikh ZA, Ellis KJ et al (1981a) Metallothionein excretion in urine upon cadmium exposure: its relationship with liver and kidney cadmium. Toxicology 22:181–191

    Article  PubMed  CAS  Google Scholar 

  • Tohyama C, Shaikh ZA, Nogawa K et al (1981b) Elevated urinary excretion of metallothionein due to environmental cadmium exposure. Toxicology 20:289–297

    Article  PubMed  CAS  Google Scholar 

  • Tohyama C, Nishimura H, Nishimura N (1988) Immunohistochemical localization of metallothionein in the liver and kidney of cadmium- or zinc-treated rats. Acta Histochem Cytochem 21:91–102

    CAS  Google Scholar 

  • Torky ARW, Stehfest E, Viehweger K et al (2005) Immuno-histochemical detection of MRPs in human lung cells in culture. Toxicology 207:437–450

    Article  PubMed  CAS  Google Scholar 

  • Trayhurn P, Duncan JS, Wood AM et al (2000) Metallothionein expression and secretion in white adipose tissue. Am J Physiol Regul Integr Comp Physiol 279:R2329–R2335

    PubMed  CAS  Google Scholar 

  • Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344

    Article  PubMed  CAS  Google Scholar 

  • Vahter M, Akesson A, Liden C et al (2007) Gender differences in the disposition and toxicity of metals. Environ Res 104:85–95

    Article  PubMed  CAS  Google Scholar 

  • Vallee BL, Ulmer DD (1972) Biochemical effects of mercury, cadmium, and lead. Ann Rev Biochem 41:91–128

    Article  PubMed  CAS  Google Scholar 

  • Vašak M, Hasler DW (2000) Metallothioneins: new functional and structural insights. Curr Opin Chem Biol 4:177–183

    Article  PubMed  Google Scholar 

  • Vasconcetos MH, Tam SC, Hesketh JE et al (2002) Metal- and tissue-dependent relationship between metallothionein mRNA and protein. Toxicol Appl Pharmacol 182:91–97

    Article  CAS  Google Scholar 

  • Verroust PJ, Kozyraki R (2001) The roles of cubilin and megalin, two multiligand receptors, in proximal tubule function: possible implication in the progression of renal disease. Curr Opin Nephrol Hypertens 10:33–38

    Article  PubMed  CAS  Google Scholar 

  • Waalkes MP (2000) Cadmium carcinogenesis in review. J Inorg Biochem 79:241–244

    Article  PubMed  CAS  Google Scholar 

  • Waalkes MP, Klaassen CD (1985) Concentration of metallothionein in major organs of rats after administration of various metals. Fundam Appl Toxicol 5:473–477

    Article  PubMed  CAS  Google Scholar 

  • Waalkes MP, Harvey MJ, Klaassen CD (1984) Relative in vitro affinity of hepatic metallothionein for metals. Toxicol Lett 20:33–39

    Article  PubMed  CAS  Google Scholar 

  • Waisberg M, Joseph P, Hale B et al (2003) Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 192:95–117

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Fang J, Leonard SS et al (2004a) Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Radic Biol Med 36:1434–1443

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Wimmer U, Lichtlen P et al (2004b) Metal-responsive transcription factor-1 (MTF-1) is essential for embryonic liver development and heavy metal detoxification in the adult liver. FASEB J 18:1071–1079

    Article  PubMed  CAS  Google Scholar 

  • Watkins SR, Hodge RM, Cowman DC et al (1977) Cadmium-binding serum proteins. Biochim Biophys Res Commun 74:1408–1410

    Article  Google Scholar 

  • Webb M (1986) Role of metallothionein in cadmium metabolism. In: Foulkes EC (ed) Handbook of experimental pharmacology, vol 80. Springer, Berlin, pp 281–337

    Google Scholar 

  • Wesselkamper SC, McDowel SA, Medvedovic M et al (2006) The role of metallothionein in the pathogenesis of acute lung injury. Am J Resp Cell Mol Biol 34:73–82

    Article  CAS  Google Scholar 

  • Wilhelmsen TW, Olsvik PA, Hansen BH et al (2002) Evidence for oligomerization of metallothioneins in their functional state. J Chromatogr A 979:249–254

    Article  PubMed  CAS  Google Scholar 

  • Wimmer U, Wang Y, Georgiev O et al (2005) Two major branches of anti-cadmium defense in the mouse: MTF-1/metallothioneins and glutathione. Nucl Acid Res 33:5715–5727

    Article  CAS  Google Scholar 

  • Winge DR, Miklossy KA (1982) Domain nature of metallothionein. J Biol Chem 257:3471–3476

    PubMed  CAS  Google Scholar 

  • Wlostowski T (1993) Involvement of metallothionein and copper in cell proliferation. Biometals 6:71–76

    Article  PubMed  CAS  Google Scholar 

  • Wolff NA, Abouhamed M, Verroust FJ et al (2006) Megalin-dependent internalization of cadmium-metallothionein and cytotoxicity in cultured renal proximal tubule cells. J Pharmacol Exp Ther 318:782–791

    Article  PubMed  CAS  Google Scholar 

  • Wolff NA, Lee W-K, Abouhamed M et al (2008) Role of ARF6 in internalization of metal-binding proteins, metallothionein and transferrin, and cadmium-metallothionein toxicity in kidney proximal tubule cells. Toxicol Appl Pharmacol 230:78–85

    Article  PubMed  CAS  Google Scholar 

  • Xie HQ, Kang YJ (2009) Role of cooper in angiogenesis and its medicinal implications. Curr Med Chem 16:1304–1314

    Article  PubMed  CAS  Google Scholar 

  • Yamano T, Shimizu M, Noda T (1998) Comparative effects of repeated administration of cadmium on kidney, spleen, thymus, and bone marrow in 2-, 4-, and 8-month-old male Wistar rats. Toxicol Sci 46:393–402

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Maret W, Vallee BL (2001) Differential fluorescence labeling of cysteinyl clusters uncovers high tissue levels of thionein. Proc Natl Acad Sci USA 98:5556–5559

    Article  PubMed  CAS  Google Scholar 

  • Ye B, Maret W, Vallee BL (2001) Zinc metallothionein imported into liver mitochondria modulates respiration. Proc Natl Acad Sci USA 98:2317–2322

    Article  PubMed  CAS  Google Scholar 

  • Yiin SJ, Chern CL, Sheu JY et al (1999) Cadmium-induced renal lipid peroxidation in rats and protection by selenium. J Toxicol Environ Health A 57:403–413

    Article  PubMed  CAS  Google Scholar 

  • Yoshida M, Ohta H, Yamauchi Y et al (1998) Age-dependent changes in metallothionein levels in liver and kidney of the Japanese. Biol Trace Elem Res 63:167–175

    Article  PubMed  CAS  Google Scholar 

  • Zalups RK, Ahmad S (2003) Molecular handling of cadmium in transporting epithelia. Toxicol Appl Pharmacol 186:163–188

    Article  PubMed  CAS  Google Scholar 

  • Zangger K, Oz G, Armitage IM (2000) Re-evaluation of the binding of ATP to metallothionein. J Biol Chem 275:7534–7538

    Article  PubMed  CAS  Google Scholar 

  • Zangger K, Shen G, Oz G, Otvos JD, Armitage IM (2001) Oxidative dimerization in metallothionein is a result of intermolecular disulphide bonds between cysteines in the alpha-domain. Biochem J 359:353–360

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Georgiev O, Hagmann M et al (2003) Activity of metal-responsive transcription factor 1 by toxic heavy metals and H2O2 in vitro is modulated by metallothionein. Mol Cell Biol 23:8471–8485

    Article  PubMed  CAS  Google Scholar 

  • Zheng H, Berman NEJ, Klaassen CD (1995) Chemical modulation of metallothinein I and III mRNA in mouse brain. Neurochem Int 27:43–58

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Mrs. Eva Heršak for technical assistance in performing experiments. This work was supported by grant 022-0222148-2146 from Ministry for Science, Education and Sports, Republic of Croatia (I.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Sabolić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabolić, I., Breljak, D., Škarica, M. et al. Role of metallothionein in cadmium traffic and toxicity in kidneys and other mammalian organs. Biometals 23, 897–926 (2010). https://doi.org/10.1007/s10534-010-9351-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-010-9351-z

Keywords

Navigation