Skip to main content

Advertisement

Log in

Deficiency in frataxin homologue YFH1 in the yeast Pichia guilliermondii leads to missregulation of iron acquisition and riboflavin biosynthesis and affects sulfate assimilation

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Pichia guilliermondii is a representative of yeast species that overproduce riboflavin (vitamin B2) in response to iron deprivation. P. guilliermondii YFH1 gene coding for frataxin homologue, eukaryotic mitochondrial protein involved in iron trafficking and storage, was identified and deleted. Constructed P. guilliermondii Δyfh1 mutant grew very poorly in a sucrose-containing synthetic medium supplemented with sulfate or sulfite as a sole sulfur source. Addition of sodium sulfide, glutathione, cysteine, methionine, N-acetyl-l-cysteine partially restored growth rate of the mutant suggesting that it is impaired in sulfate assimilation. Cellular iron content in Δyfh1 mutant was ~3–3.5 times higher as compared to the parental strain. It produced 50–70 times more riboflavin in iron sufficient synthetic media relative to the parental wild-type strain. Biomass yield of the mutant in the synthetic glutathione containing medium supplemented with glycerol as a sole carbon source was 1.4- and 2.6-fold increased as compared to sucrose and succinate containing media, respectively. Oxygen uptake of the Δyfh1 mutant on sucrose, glycerol or succinate, when compared to the parental strain, was decreased 5.5-, 1.7- and 1.5-fold, respectively. Substitution of sucrose or glycerol in the synthetic iron sufficient medium with succinate completely abolished riboflavin overproduction by the mutants. Deletion of the YFH1 gene caused hypersensitivity to hydrogen peroxide and exogenously added riboflavin and led to alterations in superoxide dismutase activities. Thus, deletion of the gene coding for yeast frataxin homologue has pleiotropic effect on metabolism in P. guilliermondii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Auchere F, Santos R, Planamente S, Lesuisse E, Camadro JM (2008) Glutathione-dependent redox status of frataxin-deficient cells in a yeast model of Friedreich’s ataxia. Hum Mol Genet 17:2790–2802

    Article  CAS  PubMed  Google Scholar 

  • Babcock M, de Silva D, Oaks R, Davis-Kaplan S, Jiralerspong S, Montermini L (1997) Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. Science 276:1709–1712

    Article  CAS  PubMed  Google Scholar 

  • Berezovskii V (1973) Khimiya vitaminov (chemistry of vitamins). Pishchevaya promyshlennost’, Moscow

    Google Scholar 

  • Bernas T, Dobrucki J (2000) The role of plasma membrane in bioreduction of two tetrazolium salts, MTT, and CTC. Arch Biochem Biophys 380:108–116

    Article  CAS  PubMed  Google Scholar 

  • Boretsky Y, Kapustyak K, Fayura L, Stasyk O, Stenchuk M, Bobak Y, Drobot L, Sibirny A (2005) Positive selection of mutants defective in transcriptional repression of riboflavin synthesis by iron in the flavinogenic yeast Pichia guilliermondii. FEMS Yeast Res 5:829–837

    Article  CAS  PubMed  Google Scholar 

  • Boretsky Y, Pynyaha Y, Boretsky V, Kutsyaba V, Protchenko O, Philpott C, Sibirny A (2007a) Development of a transformation system for gene knock-out in the flavinogenic yeast Pichia guilliermondii. J Microbiol Methods 70:13–19

    Article  CAS  PubMed  Google Scholar 

  • Boretsky Y, Protchenko O, Prokopiv T, Mukalov I, Fedorovych D, Sibirny A (2007b) Mutations and environmental factors affecting regulation of riboflavin synthesis and iron assimilation also cause oxidative stress in the yeast Pichia guilliermondii. J Basic Microbiol 47:371–377

    Article  CAS  PubMed  Google Scholar 

  • Campuzano V, Montermini L, Moltò M, Pianese L, Cossée M, Cavalcanti F (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–1427

    Article  CAS  PubMed  Google Scholar 

  • Cherest H, Surdin-Kerjan Y (1992) Genetic analysis of a new mutation conferring cysteine auxotrophy in Saccharomyces cerevisiae: updating of the sulfur metabolism pathway. Genetics 130:51–58

    CAS  PubMed  Google Scholar 

  • Dmytruk K, Voronovsky A, Sibirny A (2006) Insertion mutagenesis of the yeast Candida famata (Debaryomyces hansenii) by random integration of linear DNA fragments. Curr Genet 3:183–191

    Article  Google Scholar 

  • Fansler B, Lowenstein J (1969) Aconitase from pig heart. Methods Enzymol 13:26–30

    Article  CAS  Google Scholar 

  • Fedorovich D, Protchenko O, Lesuisse E (1999) Iron uptake by the yeast Pichia guilliermondii. Flavinogenesis and reductive iron assimilation are co-regulated processes. Biometals 12:295–300

    Article  CAS  PubMed  Google Scholar 

  • Ferrero I, Viola A, Goffeau A (1981) Induction by glucose of an antimycin-insensitive, azide-sensitive respiration in the yeast Kluyveromyces lactis. Antonie Van Leeuwenhoek 47:11–24

    Article  CAS  PubMed  Google Scholar 

  • Foury F, Cazzalini O (1997) Deletion of the yeast homologue of the human gene associated with Friedreich’s ataxia elicits iron accumulation in mitochondria. FEBS Lett 411:373–377

    Article  CAS  PubMed  Google Scholar 

  • Foury F, Pastore A, Trincal M (2007) Acidic residues of yeast frataxin have an essential role in Fe/S cluster assembly. EMBO Rep 8:194–199

    Article  CAS  PubMed  Google Scholar 

  • Gakh O, Smith D, Isaya G (2008) Assembly of the iron-binding protein frataxin in Saccharomyces cerevisiae responds to dynamic changes in mitochondrial iron influx and stress level. J Biol Chem 283:31500–31510

    Article  CAS  PubMed  Google Scholar 

  • Irazusta V, Moreno-Cermeno A, Cabiscol E, Ros J, Tamarit J (2008) Major targets of iron-induced protein oxidative damage in frataxin-deficient yeasts are magnesium-binding proteins. Free Radic Biol Med 44:1712–1723

    Article  CAS  PubMed  Google Scholar 

  • Ito-Kuwa S, Nakamura K, Aoki S, Osafune T, Vidotto V, Pienthaweechai K (1999) Oxidative stress sensitivity and superoxide dismutase of a wild-type parent strain and a respiratory mutant of Candida albicans. Med Mycol 37:307–314

    Article  CAS  PubMed  Google Scholar 

  • Lowry O, Rosebrough N, Farr A, Randall R (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Marsili E, Baron D, Shikhare I, Coursolle D, Gralnick J, Bond D (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci USA 105:3968–3973

    Article  CAS  PubMed  Google Scholar 

  • Philpott C, Protchenko O (2008) Response to iron deprivation in Saccharomyces cerevisiae. Eukaryot Cell 7:20–27

    Article  CAS  PubMed  Google Scholar 

  • Pohl T, Walter J, Stolpe S, Soufo J, Grauman P, Friedrich T (2007) Effects of the deletion of the Escherichia coli frataxin homologue CyaY on the respiratory NADH: ubiquinone oxidoreductase. BMC Biochem 24:8–13

    Google Scholar 

  • Protchenko O, Boretsky Y, Romaniuk T, Fedorovych D (2000) Oversynthesis of riboflavin by yeast Pichia guilliermondii in response to oxidative stress. Ukr Biokhim Zh 72:19–23

    CAS  PubMed  Google Scholar 

  • Protchenko O, Shakoury-Elizeh M, Keane P, Storey J, Androphy R, Philpott C (2008) Role of PUG1 in inducible porphyrin and heme transport in Saccharomyces cerevisiae. Eukaryot Cell 7:859–871

    Article  CAS  PubMed  Google Scholar 

  • Reddy H, Dayan A, Cavagnaro J, Gad S, Li J, Goodrich R (2008) Toxicity testing of a novel riboflavin-based technology for pathogen reduction and white blood cell inactivation. Transfus Med Rev 22:133–153

    Article  PubMed  Google Scholar 

  • Saliola M, Bartoccioni P, De Maria I, Lodi T, Falcone C (2004) The deletion of the succinate dehydrogenase gene KlSDH1 in Kluyveromyces lactis does not lead to respiratory deficiency. Eukaryot Cell 3:589–597

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell D (2001) Molecular cloning, a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 14–450

    Google Scholar 

  • Santos R, Buisson N, Knight S, Dancis A, Camadro J, Lesuisse E (2004) Candida albicans lacking the frataxin homologue: a relevant yeast model for studying the role of frataxin. Mol Microbiol 54:507–519

    Article  CAS  PubMed  Google Scholar 

  • Shavlovskii G, Logvinenko E (1988) Riboflavin oversynthesis in yeast and mechanisms of its regulation. Prikl Biokhim Mikrobiol 24:435–447

    CAS  PubMed  Google Scholar 

  • Shavlovskii G, Logvinenko E, Zakalskii A (1983) Purification and properties of GTP cyclohydrolase II of the yeast Pichia guilliermondii. Biokhimiia 48:837–843

    CAS  PubMed  Google Scholar 

  • Shavlovskii G, Fedorovich D, Babyak L (1990) The effect of carbon sources on the manifestation of rib80 and rib81 regulatory mutations in Pichia guilliermondii. Mikrobiologiia 59:404–410

    CAS  Google Scholar 

  • Shavlovskii G, Fedorovich D, Babyak L (1993) The effect rib81 mutation on riboflavin biosynthesis and iron transport in Pichia guilliermondii yeast. Mikrobiologiia 62:897–903

    CAS  Google Scholar 

  • Sibirny A (1996) Chapter VII. Pichia guilliermondii. In: Wolf K (ed) Nonconvential yeasts in biotechnology. Springer, Berlin

    Google Scholar 

  • Sibirnyi A, Zharova V, Kshanovskaia B, Shavlovskii G (1977) Selection of a genetic line of Pichia guilliermondii yeasts capable of forming a significant quantity of spores. Tsitol Genet 11:330–333

    CAS  PubMed  Google Scholar 

  • Sipos K, Lange H, Fekete Z, Ullmann P, Lill R, Kispal G (2002) Maturation of cytosolic iron-sulfur proteins requires glutathione. J Biol Chem 277:26944–26949

    Article  CAS  PubMed  Google Scholar 

  • Stenchuk N, Kapustiak K (2003) The red mutations impair the regulation of flavinogenesis and metal homeostasis in yeast Pichia guilliermondii. Genetika 39:1026–1032

    CAS  PubMed  Google Scholar 

  • Tanner F, Vojnovich C, Lanee J (1945) Riboflavin production by Candida species. Science 101:180–183

    Article  CAS  PubMed  Google Scholar 

  • Voronovsky A, Abbas C, Fayura L, Kshanovska B, Dmytruk K, Sybirna K, Sibirny A (2002) Development of a transformation system for the flavinogenic yeast Candida famata. FEMS Yeast Res 2:381–388

    CAS  PubMed  Google Scholar 

  • Yang M, Cobine P, Molik S, Naranuntarat A, Lill R, Winge D, Culotta V (2006) The effects of mitochondrial iron homeostasis on cofactor specificity of superoxide dismutase 2. EMBO J 25:1775–1783

    Article  CAS  PubMed  Google Scholar 

  • Zviagil’skaia R, Fedorovich D, Shavlovskiĭ G (1978) Respiratory system of Pichia guilliermondii yeasts with different levels of flavinogenesis. Mikrobiologiia 47(6):975–984

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by CRDF Grant UKB1-2810-LV-06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andriy A. Sibirny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pynyaha, Y.V., Boretsky, Y.R., Fedorovych, D.V. et al. Deficiency in frataxin homologue YFH1 in the yeast Pichia guilliermondii leads to missregulation of iron acquisition and riboflavin biosynthesis and affects sulfate assimilation. Biometals 22, 1051–1061 (2009). https://doi.org/10.1007/s10534-009-9256-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-009-9256-x

Keywords

Navigation