Skip to main content
Log in

Siderophore production by marine-derived fungi

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Siderophore production by marine-derived fungi has not been extensively explored. Three studies have investigated the ability of marine-derived fungi to produce siderophores in response to iron limitation [(Vala et al. in Indian J Mar Sci 29:339–340, 2000; Can J Microbiol 52:603–607, 2006); Baakza et al. in J Exp Mar Biol Ecol 311:1–9, 2004]. In all, 24 of 28 marine fungal strains were found to secrete hydroxamate or carboxylate siderophores; no evidence was found for production of catecholate siderophores. These studies did not determine the structures of the iron-binding compounds. More recently, a study of the natural products secreted by a marine Penicillium bilaii revealed that this strain produced the rare catecholate siderophore pistillarin when grown under relatively high iron concentrations (Capon et al. J Nat Prod 70:1746–1752, 2007). Additionally, the production of rhizoferrin by a marine isolate of Cunninghamella elegans (ATCC36112) is reported in this manuscript. The current state of knowledge about marine fungal siderophores is reviewed in light of these promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adjimani JP, Emery T (1987) Iron uptake in Mycelia sterilia EP-76. J Bacteriol 169:3664–3668

    PubMed  CAS  Google Scholar 

  • Adjimani JP, Emery T (1988) Stereochemical aspects of iron transport in Mycelia sterilia EP-76. J Bacteriol 170:1377–1379

    PubMed  CAS  Google Scholar 

  • Ardon O, Weizman H, Libman J et al (1997) Iron uptake in Ustilago maydis: studies with fluorescent ferrichrome analogues. Microbiology 143:3625–3631

    Article  CAS  Google Scholar 

  • Ardon O, Nudelman R, Caris C et al (1998) Iron uptake in Ustilago maydis: tracking the iron path. J Bacteriol 180:2021–2026

    PubMed  CAS  Google Scholar 

  • Baakza A, Vala AK, Dave BP et al (2004) A comparative study of siderophore production by fungi from marine and terrestrial habitats. J Exp Mar Biol Ecol 311:1–9

    Article  CAS  Google Scholar 

  • Barbeau K, Zhang G, Live DH, Butler A (2002) Petrobactin, a photoreactive siderophore produced by the oil-degrading marine bacterium Marinobacter hydrocarbonoclasticus. J Am Chem Soc 124:378–379

    Article  PubMed  CAS  Google Scholar 

  • Bergeron RJ, Huang G, Smith RE et al (2003) Total synthesis and structure revision of petrobactin. Tetrahedron 59:2007–2014

    Article  CAS  Google Scholar 

  • Capon RJ, Stewart M, Ratnayake R et al (2007) Citromycetins and bilains A-C: new aromatic polyketides and diketopiperazines from Australian marine-derived and terrestrial Penicillium spp. J Nat Prod 70:1746–1752

    Article  PubMed  CAS  Google Scholar 

  • Cerniglia CE, Perry JJ (1973) Crude oil degradation by microorganisms isolated from the marine environment. Z Allg Mikrobiol 13:299–306

    Article  PubMed  CAS  Google Scholar 

  • Dancis A, Roman DG, Anderson GJ et al (1992) Ferric reductase of Saccharomyces cerevisiae: molecular characterization, role in iron uptake and transcriptional control by iron. Proc Natl Acad Sci USA 89:3869–3873

    Article  PubMed  CAS  Google Scholar 

  • Drechsel H, Metzger J, Freund S et al (1991) Rhizoferrin—a novel siderophore from the fungus Rhizopus microsporus var. rhizopodiformis. Biometals 4:238–243

    CAS  Google Scholar 

  • Drechsel H, Jung G, Winkelmann G (1992) Stereochemical characterization of rhizoferrin and identification of its dehydration products. Biometals 5:141–148

    Article  CAS  Google Scholar 

  • Ecker DJ, Passavant CW, Emery T (1982) Role of two siderophores in Ustilago sphaerogena regulation and biosynthesis and uptake mechanisms. Biochim Biophys Acta 720:242–249

    Article  PubMed  CAS  Google Scholar 

  • Emery T (1971) Role of ferrichrome as a ferric ionophore in Ustilago maydis. Biochemistry 10:1483–1488

    Article  PubMed  CAS  Google Scholar 

  • Fekete FA, Chandhoke V, Jellison J (1989) Iron-binding compounds produced by wood-decaying basidiomycetes. Appl Environ Microbiol 55:2720–2722

    PubMed  CAS  Google Scholar 

  • Hickford SJ, Küpper FC, Zhang G et al (2004) Petrobactin sulfonate, a new siderophore produced by the marine bacterium Marinobacter hydrocarbonoclasticus. J Nat Prod 67:1897–1899

    Article  PubMed  CAS  Google Scholar 

  • Ismail A, Bedell GW, Lupan DM (1985) Siderophore production by the pathogenic yeast Candida albicans. Biochem Biophys Res Commun 130:885–891

    Article  PubMed  CAS  Google Scholar 

  • Jalal MAF, van der Helm D (1991) Isolation and structural identification of fungal siderophores. In: Winkelmann G (ed) CRC handbook of microbial iron chelates, 1st edn. CRC Press, Boca Raton, pp 235–270

    Google Scholar 

  • Jellison J, Chandhoke V, Goodell B, Fekete FA (1991) The isolation and immunolocalization of iron-binding compounds. Appl Microbiol Biotechnol 35:805–809

    Article  CAS  Google Scholar 

  • Johnson KS, Coale KH, Elrod VA et al (1994) Iron photochemistry in seawater from the equatorial Pacific. Mar Chem 46:319–334

    Article  CAS  Google Scholar 

  • Johnson KS, Gordon RM, Coale KH (1997) What controls dissolved iron concentrations in the world ocean? Mar Chem 57:137–161

    Article  CAS  Google Scholar 

  • Küpper FC, Carrano CJ, Kuhn J-U, Butler A (2006) Photoreactivity of iron(III)-aerobactin: photoproduct structure and iron(III) coordination. Inorg Chem 45:6028–6033

    Article  PubMed  CAS  Google Scholar 

  • Lesuisse E, Labbe P (1994) Reductive iron assimilation in Saccharomyces cerevisiae. In: Winkelmann G, Winge DR (eds) Metal ions in fungi. Marcel Dekker, New York, pp 149–178

    Google Scholar 

  • Lesuisse E, Simon-Casteras M, Labbe P (1998) Siderophore-mediated iron uptake in Saccharomyces cerevisiae: the sit1 gene encodes a ferrioxamine B permease that belongs to the major facilitator superfamily. Microbiology 144:3455–3462

    Article  PubMed  CAS  Google Scholar 

  • Martin JH (1990) Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography 5:1–13

    Article  Google Scholar 

  • Martin JH, Fitzwater SE (1988) Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature 331:341–343

    Article  CAS  Google Scholar 

  • Martin JH, Gordon RM, Fitzwater SE (1991) The case for iron. Limnol Oceanogr 36:1793–1802

    Google Scholar 

  • Martin JH, Coale KH, Johnson KS et al (1994) Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371:123–129

    Article  CAS  Google Scholar 

  • Martin JD, Ito Y, Homann VV et al (2006) Structure and membrane affinity of new amphiphilic siderophores produced by Ochrobactrum sp. SP18. J Biol Inorg Chem 11:633–641

    Article  PubMed  CAS  Google Scholar 

  • Moore JK, Doney SC, Glover DM et al (2001) Iron cycling and nutrient-limitation patterns in surface waters of the World Ocean. Deep Sea Res Pt II 49:463–507

    Article  Google Scholar 

  • Morel FMM, Price NM (2003) The biogeochemical cycles of trace metals in the oceans. Science 300:944–947

    Article  PubMed  CAS  Google Scholar 

  • Morel FMM, Milligan AJ, Saito MA (2003) Marine bioinorganic chemistry: the role of trace metals in the oceanic cycles of major nutrients. In: Turekian KK, Holland HD (eds) Treatise on geochemistry. Elsevier Science Ltd, Cambridge

    Google Scholar 

  • Müller G, Barclay SJ, Raymond KN (1985a) The mechanism and specificity of iron transport in Rhodotorula pilmanae probed by synthetic analogs of rhodotorulic acid. J Biol Chem 260:13916–13920

    PubMed  Google Scholar 

  • Müller G, Isowa Y, Raymond KN (1985b) Stereospecificity of siderophore-mediated iron uptake by Rhodotorula pilmanae as probed by enantiorhodotorulic acid and isomers of chromic rhodotorulate. J Biol Chem 260:13921–13926

    PubMed  Google Scholar 

  • Munzinger M, Taraz K, Budzikiewicz H et al (1999) S, S-rhizoferrin (enantio-rhizoferrin)—a siderophore of Ralstonia (Pseudomonas) pickettii DSM 6297—the optical antipode of R, R-rhizoferrin isolated from fungi. Biometals 12:189–193

    Article  CAS  Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    PubMed  CAS  Google Scholar 

  • O’Sullivan DW, Hanson AK, Miller WL et al (1991) Measurement of Fe(II) in surface water of the equatorial Pacific. Limnol Oceanogr 36:1727–1741

    Article  Google Scholar 

  • Renshaw JC, Robson GD, Trinci APJ et al (2002) Fungal siderophores: structures, functions and applications. Mycol Res 106:1123–1142

    Article  CAS  Google Scholar 

  • Sigel A, Sigel H (eds) (1998) Iron Transport and Storage in Microorganisms, Plants and Animals. Metal Ions in Biological Systems, vol 35. Marcel Dekker, New York

    Google Scholar 

  • Steglich W, Steffan B, Stroech K, Wolf M (1984) Pistillarin, a characteristic metabolite of Clavariadelphus pistillaris and several Ramaria species (Basidiomycetes). Z Naturforschung [C] 39C:10–12

    CAS  Google Scholar 

  • Templeton DM (2000) Molecular and cellular iron transport. Marcel Dekker, New York

    Google Scholar 

  • Thieken A, Winkelmann G (1992) Rhizoferrin: a complexone type siderophore of the mucorales and entomophthorales (Zygomycetes). FEMS Microbiol Lett 73:37–41

    Article  PubMed  CAS  Google Scholar 

  • Vala AK, Vaidya SY, Dube HC (2000) Siderophore production by facultative marine fungi. Indian J Mar Sci 29:339–340

    Google Scholar 

  • Vala AK, Dave BP, Dube HC (2006) Chemical characterization and quantification of siderophores produced by marine and terrestrial aspergilli. Can J Microbiol 52:603–607

    Article  PubMed  CAS  Google Scholar 

  • van der Helm D, Winkelmann G (1994) Hydroxamates and polycarboxylates as iron transport agents (siderophores) in fungi. In: Winkelmann G, Winge D (eds) Metal ions in fungi. Marcel Dekker, New York, pp 39–98

    Google Scholar 

  • Winkelmann G (1990) Structural and stereochemical aspects of iron transport in fungi. Biotechnol Adv 8:207–231

    Article  PubMed  CAS  Google Scholar 

  • Winkelmann G, Huschka H (1987) Molecular recognition and transport of siderophores in fungi. In: Winkelmann G, van der Helm D, Neilands JB (eds) Iron transport in microbes, plants, animals. VCH, Weinheim, pp 317–336

    Google Scholar 

Download references

Acknowledgments

This publication was made possible by Grant Number P2PRR016478 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of NCRR or NIH. NMR data were collected at the Oklahoma State University Statewide shared NMR facility. Special thanks to Prof. Alison Butler for conducting the mass spectral analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica D. Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holinsworth, B., Martin, J.D. Siderophore production by marine-derived fungi. Biometals 22, 625–632 (2009). https://doi.org/10.1007/s10534-009-9239-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-009-9239-y

Keywords

Navigation