Skip to main content
Log in

Siderophores of Marinobacter aquaeolei: petrobactin and its sulfonated derivatives

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Siderophores are low molecular weight, high-affinity iron(III) ligands, produced by bacteria to solubilize and promote iron uptake under low iron conditions. Two prominent structural features characterize the majority of the marine siderophores discovered so far: (1) a predominance of suites of amphiphilic siderophores composed of an iron(III)-binding headgroup that is appended by one or two of a series of fatty acids and (2) a prevalence of siderophores that contain α-hydroxycarboxylic acid moieties (e.g., β-hydroxyaspartic acid or citric acid) which are photoreactive when coordinated to Fe(III). Variation of the fatty acid chain length affects the relative amphiphilicity within a suite of siderophores. Catecholate sulfonation is another structural variation that would affect the hydrophilicity of a siderophore. In addition to a review of the marine amphiphilic siderophores, we report the production of petrobactin disulfonate by Marinobacter aquaeolei VT8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abergel RJ, Wilson MK, Arceneaux JEL, Hoette TM, Strong RK, Byers BR, Raymond KN (2006) Anthrax pathogen evades the mammalian immune system through stealth siderophore production. Proc Natl Acad Sci USA 103:18499–18503

    Article  PubMed  CAS  Google Scholar 

  • Amin SA, Küpper FC, Green DH, Harris WR, Carrano CJ (2007) Boron binding by a siderophore isolated from marine bacteria associated with the toxic dinoflagellate G. catenatum. J Am Chem Soc 129:478–479

    Article  PubMed  CAS  Google Scholar 

  • Antunes A, França L, Rainey FA, Huber R, Nobre MF, Edwards KJ, da Costa MS (2007) Marinobacter halosydne sp. nov., a novel species from the brine-seawater interface of the Shaban Deep, Red Sea. Int J Syst Evol Microbiol 57:1035–1040

    Article  PubMed  CAS  Google Scholar 

  • Balzano S, Statham PJ, Lloyd JR, Pancost RD (2008) Role of microbial populations in the release of reduced iron to the water column from marine aggregates. Abstracts of the 12th international symposium on microbial ecology, Cairns, Australia

  • Barbeau K, Rue EL, Bruland KW, Butler A (2001) Photochemical cycling of iron in the surface ocean mediated by microbial iron(III)-binding ligands. Nature 413:409–413

    Article  PubMed  CAS  Google Scholar 

  • Barbeau K, Zhang G, Live DH, Butler A (2002) Petrobactin, a photoreactive siderophore produced by the oil-degrading marine bacterium Marinobacter hydrocarbonoclasticus. J Am Chem Soc 124:378–379

    Article  PubMed  CAS  Google Scholar 

  • Barbeau K, Rue EL, Trick CG, Bruland KW, Butler A (2003) The photochemical reactivity of siderophores produced by marine heterotrophic bacteria and cyanobacteria based on characteristic iron(III)-binding groups. Limnol Oceanogr 48:1069–1078

    CAS  Google Scholar 

  • Bentley RK, Holliman FG (1970) Pigments of Pseudomonas species. 3. Synthesis of demethylaeruginosin-B and aeruginosin-B. J Chem Soc C-Org 18:2447

    Article  CAS  Google Scholar 

  • Bergeron RJ, Huang G, Smith RE, Bharti N, McManis JS, Butler A (2003) Total synthesis and structure revision of petrobactin. Tetrahedron 59:2007–2014

    Article  CAS  Google Scholar 

  • Bister B, Bischoff D, Nicholson GJ, Valdebenito M, Schneider K, Winkelmann G, Hantke K, Süssmuth RD (2004) The structure of salmochelins: C-glucosylated enterobactins of Salmonella enterica. Biometals 17:471–481

    Article  PubMed  CAS  Google Scholar 

  • Budzikiewicz H (2006) Bacterial aromatic sulfonates-a Bucherer reaction in nature? Mini-Rev Org Chem 3:93–97

    Article  CAS  Google Scholar 

  • Budzikiewicz H, Fuchs R, Taraz K, Marek-Kozuczuk M, Slorupska A (1998) Dihydropyoverdin-7-sulfonic acids—unusual bacterial metabolites. Nat Prod Lett 12:125–130

    Google Scholar 

  • Butler A (2005) Marine siderophores and microbial iron mobilization. Biometals 18:369–374

    Article  PubMed  CAS  Google Scholar 

  • Haygood MG, Holt PD, Butler A (1993) Aerobactin production by a planktonic marine Vibrio sp. Limnol Oceanogr 38:1091–1097

    Google Scholar 

  • Herbert RB, Holliman FG (1969) Pigments of Pseudomonas species. 2. Structure of aeruginosin B. J Chem Soc C-Org 18:2517–2520

    Article  CAS  Google Scholar 

  • Hickford SJH, Küpper FC, Zhang G, Carrano CJ, Blunt JW, Butler A (2004) Petrobactin sulfonate, a new siderophore produced by the marine bacterium Marinobacter hydrocarbonoclasticus. J Nat Prod 67:1897–1899

    Article  PubMed  CAS  Google Scholar 

  • Homann VV, Sandy M, Tincu A, Templeton A, Tebo B, Butler A (2009) Loihichelins A-F, a suite of amphiphilic siderophores produced by the marine bacterium halomonas LOB-5. J Nat Prod 72 (in press)

  • Huu NB, Denner EBM, Ha DTC, Wanner G, Stan-Lotter H (1999) Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil producing well. Int J Syst Bacteriol 49:367–375

    Article  PubMed  CAS  Google Scholar 

  • Ito Y, Butler A (2005) Structure of synechobactins, new siderophores of the marine cyanobacterium Synechococcus sp. PCC 7002. Limnol Oceanogr 50:1918–1923

    CAS  Google Scholar 

  • Kanoh K, Kamino K, Leleo G, Adachi K, Shizuri YJ (2003) Pseudoalterobactin A and B, new siderophores excreted by marine bacterium Pseudoalteromonas sp KP20–4. J Antibiot 56:871–875

    PubMed  CAS  Google Scholar 

  • Kaye JZ, Marquez MC, Ventosa A, Baross JA (2004) Halomonas neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: halophilic bacteria isolated from deep-sea hydrothermal-vent environments. Int J Syst Evol Microbiol 54:499–511

    Article  PubMed  CAS  Google Scholar 

  • Koppisch AT, Browder CC, Moe AL, Shelley JT, Kinkel BA, Hersman LE, Iyer S, Ruggiero CE (2005) Petrobactin is the primary siderophore synthesized by Bacillus anthracis str. Sterne under conditions of iron starvation. Biometals 18:577–585

    Article  PubMed  CAS  Google Scholar 

  • Küpper FC, Carrano CJ, Kuhn J-U, Butler A (2006) Photoreactivity of iron(III)-aerobactin: photoproduct structure and iron(III) coordination. Inorg Chem 45:6026–6033

    Article  CAS  Google Scholar 

  • Martin JD, Ito Y, Homann VV, Haygood MG, Butler A (2006) Structure and membrane affinity of new amphiphilic siderophores produced by Ochrobactrum sp. SP18. J Biol Inorg Chem 11:633–641

    Article  PubMed  CAS  Google Scholar 

  • Martinez JS, Zhang GP, Holt PD, Jung H-T, Carrano CJ, Haygood MG, Butler A (2000) Self-assembling amphiphilic siderophores from marine bacteria. Science 287:1245–1247

    Article  PubMed  CAS  Google Scholar 

  • Martinez JS, Carter-Franklin JN, Mann EL, Martin JD, Haygood MG, Butler A (2003) Structure and membrane affinity of a suite of amphiphilic siderophores produced by a marine bacterium. Proc Natl Acad Sci USA 100:3754–3759

    Article  PubMed  CAS  Google Scholar 

  • Reid RT, Live DH, Faulkner DJ, Butler A (1993) A siderophore from a marine bacterium with an exceptional ferric ion affinity constant. Nature 366:455–458

    Article  PubMed  CAS  Google Scholar 

  • Roepstorff P, Fohlmann J (1984) Proposal for a common nomenclature for sequence ions in mass-spectra of peptides. Biomed Mass Spectrom 11:601

    Article  PubMed  CAS  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical-assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  PubMed  CAS  Google Scholar 

  • Strott CA (2002) Sulfonation and molecular action. Endocr Rev 23:703–732

    Article  PubMed  CAS  Google Scholar 

  • Wilson MK, Abergel RJ, Raymond KN, Arceneaux JEL, Byers BR (2006) Siderophores of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. Biochem Biophys Res Comm 348:320–325

    Article  PubMed  CAS  Google Scholar 

  • Xu G, Martinez JS, Groves JT, Butler A (2002) Membrane affinity of the amphiphilic marinobactin siderophores. J Am Chem Soc 124:13408–13415

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Support from the National Institutes of Health GM38130 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison Butler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 484 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Homann, V.V., Edwards, K.J., Webb, E.A. et al. Siderophores of Marinobacter aquaeolei: petrobactin and its sulfonated derivatives. Biometals 22, 565–571 (2009). https://doi.org/10.1007/s10534-009-9237-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-009-9237-0

Keywords

Navigation