Skip to main content

Advertisement

Log in

Quantitative imaging of metals in tissues

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Metals and other trace elements play an important role in many physiological processes in all biological systems. Characterization of precise metal concentrations, their spatial distribution, and chemical speciation in individual cells and cell compartments will provide much needed information to explore the metallome in health and disease. Synchrotron-based X-ray fluorescent microscopy (SXRF) is the ideal tool to quantitatively measure trace elements with high sensitivity at high resolution. SXRF is based on the intrinsic fluorescent properties of each element and is therefore element specific. Recent advances in synchrotron technology and optimization of sample preparation have made it possible to image metals in mammalian tissue with submicron resolution. In combination with correlative methods, SXRF can now, for example, determine the amount and oxidation state of trace elements in intra-cellular compartments and identify cell-specific changes in the metal ion content during development or disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ala A, Walker AP, Ashkan K, Dooley JS, Schilsky ML (2007) Wilson’s disease. Lancet 369:397–408. doi:10.1016/S0140-6736(07)60196-2

    Article  PubMed  CAS  Google Scholar 

  • Becker JS, Mounicou S, Zoriy MV, Becker JS, Lobinski R (2008) Analysis of metal-binding proteins separated by non-denaturating gel electrophoresis using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Talanta 76:1183–1188. doi:10.1016/j.talanta.2008.05.023

    Article  PubMed  CAS  Google Scholar 

  • Becker JS, Zoriy M, Becker JS, Pickhardt C, Damoc E, Juhacz G, Palkovits M, Przybylski M (2005) Determination of phosphorus-, copper-, and zinc-containing human brain proteins by LA-ICPMS and MALDI-FTICR-MS. Anal Chem 77:5851–5860. doi:10.1021/ac0506579

    Article  PubMed  CAS  Google Scholar 

  • Buiakova OI, Xu J, Lutsenko S, Zeitlin S, Das K, Das S, Ross BM, Mekios C, Scheinberg IH, Gilliam TC (1999) Null mutation of the murine ATP7B (Wilson disease) gene results in intracellular copper accumulation and late-onset hepatic nodular transformation. Hum Mol Genet 8:1665–1671. doi:10.1093/hmg/8.9.1665

    Article  PubMed  CAS  Google Scholar 

  • Choi DW, Koh JY (1998) Zinc and brain injury. Annu Rev Neurosci 21:347–375. doi:10.1146/annurev.neuro.21.1.347

    Article  PubMed  CAS  Google Scholar 

  • Danks DM, Campbell PE, Stevens BJ, Mayne V, Cartwright E (1972) Menkes’s kinky hair syndrome. An inherited defect in copper absorption with widespread effects. Pediatrics 50:188–201

    PubMed  CAS  Google Scholar 

  • Dillon CT, Lay PA, Kennedy BJ, Stampfl AP, Cai Z, Ilinski P, Rodrigues W, Legnini DG, Lai B, Maser J (2002) Hard X-ray microprobe studies of chromium(VI)-treated V79 Chinese hamster lung cells: intracellular mapping of the biotransformation products of a chromium carcinogen. J Biol Inorg Chem 7:640–645. doi:10.1007/s00775-002-0343-5

    Article  PubMed  CAS  Google Scholar 

  • Finney L, Mandava S, Ursos L, Zhang W, Rodi D, Vogt S, Legnini D, Maser J, Ikpatt F, Olopade OI, Glesne D (2007) X-ray fluorescence microscopy reveals large-scale relocalization and extracellular translocation of cellular copper during angiogenesis. Proc Natl Acad Sci USA 104:2247–2252. doi:10.1073/pnas.0607238104

    Article  PubMed  CAS  Google Scholar 

  • Hall MD, Dillon CT, Zhang M, Beale P, Cai Z, Lai B, Stampfl AP, Hambley TW (2003) The cellular distribution and oxidation state of platinum(II) and platinum(IV) antitumour complexes in cancer cells. J Biol Inorg Chem 8:726–732. doi:10.1007/s00775-003-0471-6

    Article  PubMed  CAS  Google Scholar 

  • Hanaichi T, Kidokoro R, Hayashi H, Sakamoto N (1984) Electron probe X-ray analysis on human hepatocellular lysosomes with copper deposits: copper binding to a thiol-protein in lysosomes. Lab Invest 51:592–597

    PubMed  CAS  Google Scholar 

  • Harris HH, Levina A, Dillon CT, Mulyani I, Lai B, Cai Z, Lay PA (2005) Time-dependent uptake, distribution and biotransformation of chromium(VI) in individual and bulk human lung cells: application of synchrotron radiation techniques. J Biol Inorg Chem 10:105–118. doi:10.1007/s00775-004-0617-1

    Article  PubMed  CAS  Google Scholar 

  • Huster D, Finegold MJ, Morgan CT, Burkhead JL, Nixon R, Vanderwerf SM, Gilliam CT, Lutsenko S (2006) Consequences of copper accumulation in the livers of the atp7b/ (Wilson disease gene) knockout mice. Am J Pathol 168:423–434. doi:10.2353/ajpath.2006.050312

    Article  PubMed  CAS  Google Scholar 

  • Kemner KM, Kelly SD, Lai B, Maser J, O’Loughlin EJ, Sholto-Douglas D, Cai Z, Schneegurt MA, Kulpa CF Jr, Nealson KH (2004) Elemental and redox analysis of single bacterial cells by X-ray microbeam analysis. Science 306:686–687. doi:10.1126/science.1103524

    Article  PubMed  CAS  Google Scholar 

  • Kirz J, Sayre D, Dilger J (1978) Short Wavelength Microscopy. NY Academy of Science, New York

    Google Scholar 

  • Koh JY, Suh SW, Gwag BJ, He YY, Hsu CY, Choi DW (1996) The role of zinc in selective neuronal death after transient global cerebral ischemia. Science 272:1013–1016. doi:10.1126/science.272.5264.1013

    Article  PubMed  CAS  Google Scholar 

  • Lahner B, Gong J, Mahmoudian M, Smith EL, Abid KB, Rogers EE, Guerinot ML, Harper JF, Ward JM, McIntyre L, Schroeder JI, Salt DE (2003) Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana. Nat Biotechnol 21:1215–1221. doi:10.1038/nbt865

    Article  PubMed  CAS  Google Scholar 

  • Loudianos G, Gitlin JD (2000) Wilson’s disease. Semin Liver Dis 20:353–364. doi:10.1055/s-2000-9389

    Article  PubMed  CAS  Google Scholar 

  • McCrea RP, Harder SL, Martin M, Buist R, Nichol H (2008) A comparison of rapid-scanning X-ray fluorescence mapping and magnetic resonance imaging to localize brain iron distribution. Eur J Radiol 68:109–113

    Article  Google Scholar 

  • McRae R, Lai B, Vogt S, Fahrni CJ (2006) Correlative microXRF and optical immunofluorescence microscopy of adherent cells labeled with ultrasmall gold particles. J Struct Biol 155:22–29. doi:10.1016/j.jsb.2005.09.013

    Article  PubMed  CAS  Google Scholar 

  • Miller LM, Wang Q, Telivala TP, Smith RJ, Lanzirotti A, Miklossy J (2006) Synchrotron-based infrared and X-ray imaging shows focalized accumulation of Cu and Zn co-localized with beta-amyloid deposits in Alzheimer’s disease. J Struct Biol 155:30–37

    Article  PubMed  CAS  Google Scholar 

  • Nakazato K, Nagamine T, Suzuki K, Kusakabe T, Moon HD, Oikawa M, Sakai T, Arakawa K (2008) Subcellular changes of essential metal shown by in-air micro-PIXE in oral cadmium-exposed mice. Biometals 21:83–91. doi:10.1007/s10534-007-9095-6

    Article  PubMed  CAS  Google Scholar 

  • Paunesku T, Rajh T, Wiederrecht G, Maser J, Vogt S, Stojicevic N, Protic M, Lai B, Oryhon J, Thurnauer M, Woloschak G (2003) Biology of TiO2-oligonucleotide nanocomposites. Nat Mater 2:343–346. doi:10.1038/nmat875

    Article  PubMed  CAS  Google Scholar 

  • Pickering IJ, Gumaelius L, Harris HH, Prince RC, Hirsch G, Banks JA, Salt DE, George GN (2006) Localizing the biochemical transformations of arsenate in a hyperaccumulating fern. Environ Sci Technol 40:5010–5014. doi:10.1021/es052559a

    Article  PubMed  CAS  Google Scholar 

  • Pickering IJ, Prince RC, Salt DE, George GN (2000) Quantitative, chemically specific imaging of selenium transformation in plants. Proc Natl Acad Sci USA 97:10717–10722. doi:10.1073/pnas.200244597

    Article  PubMed  CAS  Google Scholar 

  • Roomans GM (1988) Introduction to X-ray microanalysis in biology. J Electron Microsc Tech 9:3–17. doi:10.1002/jemt.1060090103

    Article  PubMed  CAS  Google Scholar 

  • Roomans GM, Von Euler A (1996) X-ray microanalysis in cell biology and cell pathology. Cell Biol Int 20:103–109. doi:10.1006/cbir.1996.0014

    Article  PubMed  CAS  Google Scholar 

  • Sham TK, Kim PSG, Ngo H, Chakrabarti S, Adams PC (2005) X-ray Microspectroscopy of Hemochromatosis Liver and Diabetic Mice Kidney Tissues: Preliminary Observations. Phys Scr T 115:1047–1049. doi:10.1238/Physica.Topical.115a01047

    Article  Google Scholar 

  • Sparks CJ (1980) Synchrotron Radiation Research. Plenum Press, New York

    Google Scholar 

  • Szokefalvi-Nagy Z (1994) Applications of PIXE in the life sciences. Biol Trace Elem Res 43–45:73–78. doi:10.1007/BF02917301

    Article  PubMed  Google Scholar 

  • Twining BS, Baines SB, Fisher NS, Maser J, Vogt S, Jacobsen C, Tovar-Sanchez A, Sanudo-Wilhelmy SA (2003) Quantifying trace elements in individual aquatic protist cells with a synchrotron X-ray fluorescence microprobe. Anal Chem 75:3806–3816. doi:10.1021/ac034227z

    Article  PubMed  CAS  Google Scholar 

  • Van Espen P (2002) Spectrum Evaluation Handbook of X-ray Spectrometry. Marcel Dekker, New York

    Google Scholar 

  • Vogt S (2003) Maps: A set of software tools for analysis and visualization of 3D X-ray fluorescent datasets. J Phys IV 104:635–638. doi:10.1051/jp4:20030160

    Article  CAS  Google Scholar 

  • Waern JB, Harris HH, Lai B, Cai Z, Harding MM, Dillon CT (2005) Intracellular mapping of the distribution of metals derived from the antitumor metallocenes. J Biol Inorg Chem 10:443–452. doi:10.1007/s00775-005-0649-1

    Article  PubMed  CAS  Google Scholar 

  • Waggoner DJ, Bartnikas TB, Gitlin JD (1999) The role of copper in neurodegenerative disease. Neurobiol Dis 6:221–230. doi:10.1006/nbdi.1999.0250

    Article  PubMed  CAS  Google Scholar 

  • Yang L, McRae R, Henary MM, Patel R, Lai B, Vogt S, Fahrni CJ (2005) Imaging of the intracellular topography of copper with a fluorescent sensor and by synchrotron X-ray fluorescence microscopy. Proc Natl Acad Sci USA 102:11179–11184. doi:10.1073/pnas.0406547102

    Article  PubMed  CAS  Google Scholar 

  • Yun W, Lai B, Cai Z, Maser J, Legnini D, Gluskin E, Chen Z, Krasnoperova A, Valdimirsky Y, Cerrina F, Di Fabrizio E, Gentili M (1999) Nanometer Focusing of Hard X-Rays by Phase Zone Plates. Rev Sci Instrum 70:2238–2241. doi:10.1063/1.1149744

    Article  CAS  Google Scholar 

  • Zierold K (2000) Heavy metal cytotoxicity studied by electron probe X-ray microanalysis of cultured rat hepatocytes. Toxicol In Vitro 14:557–563. doi:10.1016/S0887-2333(00)00049-7

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge the use of the facilities at the Advanced Photon Source. This work was supported by a National Institutes of Health Grant GM067166 to SL, the use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science Contract DE-AC-02-06CH11357

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Ralle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ralle, M., Lutsenko, S. Quantitative imaging of metals in tissues. Biometals 22, 197–205 (2009). https://doi.org/10.1007/s10534-008-9200-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-008-9200-5

Keywords

Navigation