Skip to main content
Log in

Contributions of freshwater mussels (Unionidae) to nutrient cycling in an urban river: filtration, recycling, storage, and removal

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Consumers contribute to nutrient cycling in aquatic ecosystems by nutrient retention in tissues, metabolic transformations and excretion, and promoting microbial processes that remove nutrients (i.e., nitrogen (N) loss via denitrification). Freshwater mussels (Unionidae) form dense assemblages in rivers, and affect nutrient transformations through feeding, biodeposition, and bioturbation. However, the effects of Unionid mussels on N and phosphorus (P) retention are not commonly measured. We quantified rates of filtration, retention, and biodeposition of carbon (C), N, and P for two Unionid species: Lasmigona complanata and Pyganodon grandis. We used continuous-flow cores with 15N tracers to measure denitrification in sediments alone and with a single individual of each species. We conducted measurements in an urban river near Chicago, IL, USA that is a target for Unionid restoration. Both Unionid species showed high rates of P-specific feeding and retention, but low N-specific rates. This was in agreement with high N:P ratio in the water column. Each species significantly increased denitrification relative to sediment alone. 15N tracers suggested direct denitrification of nitrate increased denitrification, although enhanced coupled nitrification–denitrification likely also contributed to denitrification. Finally, denitrification rates with and without mussels were used to estimate the value of N loss under different scenarios for mussel restoration at the river scale. Overall, restored Unionid populations may enhance P retention in soft tissues and shells and N loss via denitrification. Ecosystem managers may find greater support for restoration of Unionid populations with careful calculations of their ecosystem role in nutrient retention and removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • An S, Gardner WS, Kana T (2001) Simultaneous measurement of denitrification and nitrogen fixation using isotope pairing with membrane inlet mass spectormetry analysis. Appl Environ Microbiol 67(3):1171–1178

    Article  Google Scholar 

  • Anthony JL, Kesler DH, Downing WL, Downing JA (2001) Length-specific growth rates in freshwater mussels (Bivalvia: Unionidae): extreme longevity or generalized growth cessation? Freshw Biol 46(10):1349–1359

    Article  Google Scholar 

  • APHA (1998) Standard methods for the examination of water and wastewater, 20th edn. United Book Press Inc, Baltimore, MD

    Google Scholar 

  • Aspila K, Agemian H, Chau A (1976) A semi-automated method for the determination of inorganic, organic and total phosphate in sediments. Analyst 101(1200):187–197

    Article  Google Scholar 

  • Atkinson CL, Vaughn CC (2015) Biogeochemical hotspots: temporal and spatial scaling of the impact of freshwater mussels on ecosystem function. Freshw Biol 60(3):563–574

    Article  Google Scholar 

  • Atkinson CL, Kelly JF, Vaughn CC (2014) Tracing consumer-derived nitrogen in riverine food webs. Ecosystems 17(3):485–496

    Article  Google Scholar 

  • Atkinson CL, Capps KA, Rugenski AT, Vanni MJ (2016) Consumer-driven nutrient dynamics in freshwater ecosystems: from individuals to ecosystems. Biol Rev. doi:10.1111/brv.12318

    Google Scholar 

  • Baker SM, Levinton JS (2003) Selective feeding by three native North American freshwater mussels implies food competition with zebra mussels. Hydrobiologia 505(1–3):97–105

    Article  Google Scholar 

  • Bayne BL (2002) A physiological comparison between Pacific oysters Crassostrea gigas and Sydney Rock oysters Saccostrea glomerata: food, feeding and growth in a shared habitat. Mar Ecol Prog Ser 232:163–178

    Article  Google Scholar 

  • Bayne BL, Hedgecock D, McGoldrick D, Rees R (1999) Feeding behaviour and metabolic efficiency contribute to growth heterosis in Pacific oysters Crassostrea gigas (Thunberg). J Exp Mar Biol Ecol 233(1):115–130

    Article  Google Scholar 

  • Beaulieu JJ, Tank JL, Hamilton SK, Wollheim WM, Hall RO, Mulholland PJ, Peterson BJ, Ashkenas LR, Cooper LW, Dahm CN, Dodds WK, Grimm NB, Johnson SL, McDowell WH, Poole GC, Valett HM, Arango CP, Bernot MJ, Burgin AJ, Crenshaw CL, Helton AM, Johnson LT, O’Brien JM, Potter JD, Sheibley RW, Sobota DJ, Thomas SM (2011) Nitrous oxide emission from denitrification in stream and river networks. Proc Natl Acad Sci USA 108(1):214–219

    Article  Google Scholar 

  • Beck MW, Brumbaugh RD, Airoldi L, Carranza A, Coen LD, Crawford C, Defeo O, Edgar GJ, Hancock B, Kay MC, Lenihan HS, Luckenbach MW, Toropova CL, Zhang G, Guo X (2011) Oyster reefs at risk and recommendations for conservation, restoration, and management. Bioscience 61(2):107–116

    Article  Google Scholar 

  • Benelli S, Bartoli M, Racchetti E, Moraes PC, Zilius M, Lubiene I, Fano EA (2017) Rare but large bivalves alter benthic respiration and nutrient recycling in riverine sediments. Aquat Ecol 51(1):1–16

    Article  Google Scholar 

  • Benstead JP, Cross WF, March JG, McDowell WH, Ramirez A, Covich AP (2010) Biotic and abiotic controls on the ecosystem significance of consumer excretion in two contrasting tropical streams. Freshw Biol 55(10):2047–2061

    Article  Google Scholar 

  • Beseres Pollack J, Yoskowitz D, Kim HC, Montagna PA (2013) Role and value of nitrogen regulation provided by oysters (Crassostrea virginica) in the Mission-Aransas Estuary, Texas, USA. PLoS ONE 8(6):e65314

    Article  Google Scholar 

  • Beusen AH, Bouwman AF, Van Beek LP, Mogollón JM, Middelburg JJ (2016) Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum. Biogeosciences 13(8):2441

    Article  Google Scholar 

  • Bruesewitz DA, Tank JL, Bernot MJ, Richardson WB, Strauss EA (2006) Seasonal effects of the zebra mussel (Dreissena polymorpha) on sediment denitrification rates in Pool 8 of the Upper Mississippi River. Can J Fish Aquat Sci 63(5):957–969

    Article  Google Scholar 

  • Bruesewitz DA, Tank JL, Bernot MJ (2008) Delineating the effects of zebra mussels (Dreissena polymorpha) on N transformation rates using laboratory mesocosms. J N Am Benthol Soc 27(2):236–251

    Article  Google Scholar 

  • Bruesewitz DA, Tank JL, Hamilton SK (2009) Seasonal effects of zebra mussels on littoral nitrogen transformation rates in Gull Lake, Michigan, USA. Freshw Biol 54(7):1427–1443

    Article  Google Scholar 

  • Bruesewitz DA, Gardner WS, Mooney RF, Pollard L, Buskey EJ (2013) Estuarine ecosystem function response to flood and drought in a shallow, semiarid estuary: nitrogen cycling and ecosystem metabolism. Limnol Oceanogr 58(6):2293–2309

    Article  Google Scholar 

  • Bruesewitz DA, Gardner WS, Mooney RF, Buskey EJ (2015) Seasonal water column NH4 + cycling along a semi-arid sub-tropical river–estuary continuum: responses to episodic events and drought conditions. Ecosystems 18(5):792–812

    Article  Google Scholar 

  • Burgin AJ, Hamilton SK (2008) NO3 -driven SO4 2− production in freshwater ecosystems: implications for N and S cycling. Ecosystems 11(6):908–922

    Article  Google Scholar 

  • Cahoon L, Owen D (1996) Can suspension feeding by bivalves regulate phytoplankton biomass in Lake Waccamaw, North Carolina? Hydrobiologia 325(3):193–200

    Article  Google Scholar 

  • Capps KA, Flecker AS (2013) Invasive fishes generate biogeochemical hotspots in a nutrient-limited system. PLoS ONE 8(1):e54093

    Article  Google Scholar 

  • Christian AD, Crump BG, Berg DJ (2008) Nutrient release and ecological stoichiometry of freshwater mussels (Mollusca: Unionidae) in 2 small, regionally distinct streams. J N Am Benthol Soc 27(2):440–450

    Article  Google Scholar 

  • DuPage County Stormwater Management (2015) East Branch DuPage River Watershed and Resiliency Plan. The County of DuPage, Wheaton, IL

  • Eyre BD, Rysgaard S, Dalsgaard T, Christensen PB (2002) Comparison of isotope pairing and N2: Ar methods for measuring sediment denitrification—Assumption, modifications, and implications. Estuaries 25(6):1077–1087

    Article  Google Scholar 

  • Galimany E, Rose JM, Dixon MS, Wikfors GH (2013) Quantifying feeding behaviors of ribbed mussels, Geukensia demissa, in two urban sites (Long Island Sound, USA) with different seston conditions. Estuar Coasts 36:1265–1273

    Article  Google Scholar 

  • Gardner WS, McCarthy MJ (2009) Nitrogen dynamics at the sediment-water interface in shallow, sub-tropical Florida Bay: why denitrification efficiency may decrease with increased eutrophication. Biogeochemistry 95(2–3):185–198

    Article  Google Scholar 

  • Gardner WS, McCarthy MJ, Carini SA, Souza AC, Lijun H, McNeal KS, Puckett MK, Pennington J (2009) Collection of intact sediment cores with overlying water to study nitrogen-and oxygen-dynamics in regions with seasonal hypoxia. Cont Shelf Res 29(18):2207–2213

    Article  Google Scholar 

  • Grabowski JH, Peterson CH (2007) Restoring oyster reefs to recover ecosystem services. In: Cuddington K, Byers JE, Wilson WG, Hastings A (eds) Ecosystem engineers: plants to protists. Academic Press, Amsterdam, pp 281–298

    Chapter  Google Scholar 

  • Griffiths NA, Hill WR (2014) Temporal variation in the importance of a dominant consumer to stream nutrient cycling. Ecosystems 17(7):1169–1185

    Article  Google Scholar 

  • Groffman PM, Holland EA, Myrold DD, Robertson GP, Zou X (1999) Denitrification. In: Robertson GP (ed) Standard soil methods for long-term ecological research. Oxford University Press, Cary, NC, pp 272–290

    Google Scholar 

  • Haag WR (2012) North American freshwater mussels: natural history, ecology, and conservation. Cambridge University Press, New York, NY

    Book  Google Scholar 

  • Hall R, Tank JL, Dybdahl MF (2003) Exotic snails dominate nitrogen and carbon cycling in a highly productive stream. Front Ecol Environ 1(8):407–411

    Article  Google Scholar 

  • Heisterkamp IM, Schramm A, Larsen LH, Svenningsen NB, Lavik G, de Beer D, Stief P (2013) Shell biofilm-associated nitrous oxide production in marine molluscs: processes, precursors and relative importance. Environ Microbiol 15(7):1943–1955

    Article  Google Scholar 

  • Hoellein TJ, Zarnoch CB (2014) Effect of eastern oysters (Crassostrea virginica) on sediment carbon and nitrogen dynamics in an urban estuary. Ecol Appl 24(2):271–286

    Article  Google Scholar 

  • Hoellein TJ, Zarnoch CB, Grizzle R (2015) Eastern oyster (Crassostrea virginica) filtration, biodeposition, and sediment nitrogen cycling at two oyster reefs with contrasting water quality in Great Bay Estuary (New Hampshire, USA). Biogeochemistry 122(1):113–129

    Article  Google Scholar 

  • Holland-Bartels LE (1990) Physical factors and their influence on the mussel fauna of a main channel border habitat of the upper Mississippi River. J N Am Benthol Soc 9(4):327–335

    Article  Google Scholar 

  • Iglesias JIP, Urrutia MB, Navarro E, Ibarrola I (1998) Measuring feeding and absorption in suspension-feeding bivalves: an appraisal of the biodeposition method. J Exp Mar Biol Ecol 219(1–2):71–86

    Article  Google Scholar 

  • Inwood SE, Tank JL, Bernot MJ (2005) Patterns of denitrification associated with land use in 9 midwestern headwater streams. J N Am Benthol Soc 24(2):227–245

    Article  Google Scholar 

  • Janetski DJ, Chaloner DT, Tiegs SD, Lamberti GA (2009) Pacific salmon effects on stream ecosystems: a quantitative synthesis. Oecologia 159(3):583–595

    Article  Google Scholar 

  • Jones HFE, Pilditch CA, Bruesewitz DA, Lohrer AM (2011) Sedimentary environment influences the effect of an infaunal suspension feeding bivalve on estuarine ecosystem function. PLoS ONE 6(10):e27065

    Article  Google Scholar 

  • Kana TM, Weiss DL (2004) Comment on “Comparison of isotope pairing and N2:Ar methods for measuring sediment denitrification” by B. D. Eyre, S. Rysgaard, T. Dalsgaard, and P. Bondo Christensen. 2002. Estuaries 25:1077–1087. Estuaries 27(1):173–176

    Article  Google Scholar 

  • Kana TM, Sullivan MB, Cornwell JC, Groszkowski KM (1998) Denitrification in estuarine sediments determined by membrane inlet mass spectrometry. Limnol Oceanogr 43(2):334–339

    Article  Google Scholar 

  • Keitzer SC, Goforth RR (2013) Spatial and seasonal variation in the ecological significance of nutrient recycling by larval salamanders in Appalachian headwater streams. Freshw Sci 32(4):1136–1147

    Article  Google Scholar 

  • Kellogg LM, Cornwell JC, Owens MS, Paynter KT (2013) Denitrification and nutrient assimilation on a restored oyster reef. Mar Ecol Prog Ser 480:1–19

    Article  Google Scholar 

  • Kellogg ML, Smyth AR, Luckenbach MW, Carmichael RH, Brown BL, Cornwell JC, Piehler MF, Owens MS, Dalrymple DJ, Higgins CB (2014) Use of oysters to mitigate eutrophication in coastal waters. Estuar Coast Shelf Sci 151:156–168

    Article  Google Scholar 

  • Kryger J, Riisgård HU (1988) Filtration rate capacities in 6 species of European freshwater bivalves. Oecologia 77(1):34–38

    Article  Google Scholar 

  • Levi PS, Tank JL, Tiegs SD, Chaloner DT, Lamberti GA (2013) Biogeochemical transformations of a nutrient subsidy: salmon, streams, and nitrification. Biogeochemistry 113:643–655

    Article  Google Scholar 

  • Lindemann S, Zarnoch CB, Castignetti D, Hoellein TJ (2016) Effect of eastern oysters (Crassostrea virginica) and seasonality on nitrite reductase gene abundance (nirS, nirK, nrfA) in an urban estuary. Estuar Coasts 39(1):218–232

    Article  Google Scholar 

  • Lydeard C, Cowie RH, Ponder WF, Bogan AE, Bouchet P, Clark SA, Cummings KS, Frest TJ, Gargominy O, Herbert DG (2004) The global decline of nonmarine mollusks. Bioscience 54(4):321–330

    Article  Google Scholar 

  • McCarthy MJ, Gardner WS (2003) An application of membrane inlet mass spectrometry to measure denitrification in a recirculating mariculture system. Aquaculture 218(1–4):341–355

    Article  Google Scholar 

  • McCarthy MJ, Gardner WS, Lavrentyev PJ, Moats KM, Joehem FJ, Klarer DM (2007) Effects of hydrological flow regime on sediment-water interface and water column nitrogen dynamics in a great lakes coastal wetland (Old Woman Creek, Lake Erie). J Great Lakes Res 33(1):219–231

    Article  Google Scholar 

  • McCarthy MJ, McNeal KS, Morse JW, Gardner WS (2008) Bottom-water hypoxia effects on sediment–water interface nitrogen transformations in a seasonally hypoxic, shallow bay (Corpus Christi Bay, TX, USA). Estuar Coasts 31(3):521–531

    Article  Google Scholar 

  • McIntyre PB, Flecker AS, Vanni MJ, Hood JM, Taylor BW, Thomas SA (2008) Fish distributions and nutrient cycling in streams: can fish create biogeochemical hotspots. Ecology 89(8):2335–2346

    Article  Google Scholar 

  • Morkved P, Sovik A, Klove B, Bakken L (2005) Removal of nitrogen in different wetland filter materials: use of stable nitrogen isotopes to determine factors controlling denitrification and DNRA. Water Sci Technol 51(9):63–71

    Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for determination of phosphate in natural waters. Anal Chim Acta 26(1):31–36

    Article  Google Scholar 

  • Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, New York, NY

    Google Scholar 

  • Raikow DF, Hamilton SK (2001) Bivalve diets in a midwestern US stream: a stable isotope enrichment study. Limnol Oceanogr 46(3):514–522

    Article  Google Scholar 

  • Small GE, Pringle CM, Pyron M, Duff JH (2011) Role of the fish Astyanax aeneus (Characidae) as a keystone nutrient recycler in low-nutrient Neotropical streams. Ecology 92(2):386–397

    Article  Google Scholar 

  • Smyth AR, Geraldi NR, Piehler MF (2013) Oyster-mediated benthic-pelagic coupling modifies nitrogen pools and processes. Mar Ecol Prog Ser 493:23–30

    Article  Google Scholar 

  • Smyth AR, Piehler MF, Grabowski JH (2015) Habitat context influences nitrogen removal by restored oyster reefs. J Appl Ecol 52(3):716–725

    Article  Google Scholar 

  • Solorzano L (1969) Determination of ammonium in natural waters by the phenolhypochlorite method. Limnol Oceanogr 14:799–801

    Article  Google Scholar 

  • Spooner DE, Vaughn CC (2008) A trait-based approach to species’ roles in stream ecosystems: climate change, community structure, and material cycling. Oecologia 158(2):307–317

    Article  Google Scholar 

  • Storey RG, Williams DD, Fulthorpe RR (2004) Nitrogen processing in the hyporheic zone of a pastoral stream. Biogeochemistry 69(3):285–313

    Article  Google Scholar 

  • Strayer DL (2014) Understanding how nutrient cycles and freshwater mussels (Unionoida) affect one another. Hydrobiologia 735(1):277–292

    Article  Google Scholar 

  • Strayer DL, Malcom HM (2007) Shell decay rates of native and alien freshwater bivalves and implications for habitat engineering. Freshw Biol 52(8):1611–1617

    Article  Google Scholar 

  • Strayer DL, Caraco NF, Cole JJ, Findlay S, Pace ML (1999) Transformation of freshwater ecosystems by bivalves. Bioscience 49(1):19–27

    Article  Google Scholar 

  • Svenningsen NB, Heisterkamp IM, Sigby-Clausen M, Larsen LH, Nielsen LP, Stief P, Schramm A (2012) Shell biofilm nitrification and gut denitrification contribute to emission of nitrous oxide by the invasive freshwater mussel Dreissena polymorpha (zebra mussel). Appl Environ Microbiol 78(12):4505–4509

    Article  Google Scholar 

  • Turek KA, Hoellein TJ (2015) The invasive Asian clam (Corbicula fluminea) increases sediment denitrification and ammonium flux in 2 streams in the Midwestern United States. Freshw Sci 34(2):472–484

    Article  Google Scholar 

  • Vanni MJ (2002) Nutrient cycling by animals in freshwater ecosystems. Annu Rev Ecol Syst 33:341–370

    Article  Google Scholar 

  • Vanni MJ, Bowling AM, Dickman EM, Hale RS, Higgins KA, Horgan MJ, Knoll LB, Renwick WH, Stein RA (2006) Nutrient cycling by fish supports relatively more primary production as lake productivity increases. Ecology 87(7):1696–1709

    Article  Google Scholar 

  • Vanni MJ, Boros G, McIntyre PB (2013) When are fish sources vs. sinks of nutrients in lake ecosystems? Ecology 94(10):2195–2206

    Article  Google Scholar 

  • Vaughn CC, Hakenkamp CC (2001) The functional role of burrowing bivalves in freshwater ecosystems. Freshw Biol 46(11):1431–1446

    Article  Google Scholar 

  • Vaughn CC, Nichols SJ, Spooner DE (2008) Community and foodweb ecology of freshwater mussels. J N Am Benthol Soc 27(2):409–423

    Article  Google Scholar 

  • Vaughn CC, Atkinson CL, Julian JP (2015) Drought-induced changes in flow regimes lead to long-term losses in mussel-provided ecosystem services. Ecol Evol 5(6):1291–1305

    Article  Google Scholar 

  • Walsh CJ, Roy AH, Feminella JW, Cottingham PD, Groffman PM, Morgan RP (2005) The urban stream syndrome: current knowledge and the search for a cure. J N Am Benthol Soc 24(3):706–723

    Article  Google Scholar 

  • Welsh DT, Nizzoli D, Fano EA, Viaroli P (2014) Direct contribution of clams (Ruditapes philippinarum) to benthic fluxes, nitrification, denitrification and nitrous oxide emission in a farmed sediment. Estuar Coast Shelf Sci 154:84–93

    Article  Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Prentice-Hall Inc, Upper Saddle River, NJ

    Google Scholar 

  • Zhang L, Shen Q, Hu H, Shao S, Fan C (2011) Impacts of Corbicula fluminea on oxygen uptake and nutrient fluxes across the sediment-water interface. Water Air Soil Pollut 220(1–4):399–411

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by Loyola University Chicago and the National Science Foundation (MRI-0959876). For assistance in the laboratory we thank Melaney Dunne, Michael Hassett, Ashley Cook, Amanda McCormick, and Samantha Hertel from Loyola University Chicago and Erika Fusco, Monzural Haque, and Siena Schickler from Baruch College. We thank Rebecca Chmiel, Emma Berger, and Whitney King at Colby College.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Hoellein.

Additional information

Responsible Editor: Breck Bowden.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoellein, T.J., Zarnoch, C.B., Bruesewitz, D.A. et al. Contributions of freshwater mussels (Unionidae) to nutrient cycling in an urban river: filtration, recycling, storage, and removal. Biogeochemistry 135, 307–324 (2017). https://doi.org/10.1007/s10533-017-0376-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-017-0376-z

Keywords

Navigation