Skip to main content
Log in

Microbial reduction of bromate: current status and prospects

  • Review Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Bromate is a disinfection byproduct (DBP) that forms during the ozonation of bromide-containing natural water, which may cause health risks to humans. In this review, we provide an overview of the mechanism of bromate formation, microbial communities and bioreactors that are responsible for bromate reduction. Bromate can be formed through two pathways of bromide oxidation by ozone or by ·OH, and it can be removed by biological approaches. Members belonging to phyla of Spirochaetes, Proteobacteria, Firmicutes, Actinobacteria, Clostridium, Deinococcus-Thermus and Bacteroidetes have been identified as capable of reducing bromate to bromide. Multiple configurations of biofilm bioreactors have been employed to cultivate microbial communities to perform bromate removal. The rapid development of multiomics has and will continue to accelerate the elucidation of the mechanisms involved in bromate and other DBP conversions, as well as the interaction patterns among different bacterial subdivisions in the bioremoval of DBPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agus E, Voutchkov N, Sedlak DL (2009) Disinfection by-products and their potential impact on the quality of water produced by desalination systems: a literature review. Desalination 237(1–3):214–237

    Article  CAS  Google Scholar 

  • Assunção A, Martins M, Silva G, Lucas H, Coelho M, Costa M (2011) Bromate removal by anaerobic bacterial community: mechanism and phylogenetic characterization. J Hazard Mater 197:237–243

    Article  PubMed  CAS  Google Scholar 

  • Butler R, Godley AR, Lake R, Lytton L, Cartmell E (2005) Reduction of bromate in groundwater with an ex situ suspended growth bioreactor. Water Sci Technol 52(9):265–273

    Article  CAS  PubMed  Google Scholar 

  • Butler R, Ehrenberg S, Godley AR, Lake R, Lytton L, Cartmell E (2006) Remediation of bromate-contaminated groundwater in an ex situ fixed-film bioreactor. Sci Total Environ 366(1):12–20

    Article  CAS  PubMed  Google Scholar 

  • Chairez M, Luna-Velasco A, Field JA, Ju X, Sierra-Alvarez R (2010) Reduction of bromate by biogenic sulfide produced during microbial sulfur disproportionation. Biodegradation 21:235–244

    Article  CAS  PubMed  Google Scholar 

  • Chao Y, Mao Y, Wang Z, Zhang T (2015) Diversity and functions of bacterial community in drinking water biofilms revealed by high-throughput sequencing. Sci Rep 5:10044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson AN, Chee-Sanford J, Lai HY, Ho CH, Klenzendorf JB, Kirisits MJ (2011) Characterization of bromate-reducing bacterial isolates and their potential for drinking water treatment. Water Res 45(18):6051–6062

    Article  CAS  PubMed  Google Scholar 

  • Demirel S (2016) Denitrification performance and microbial community dynamics in a denitrification reactor by as revealed high-throughput sequencing. Water Sci Tech-W Sup 17(4):940–946

    Article  CAS  Google Scholar 

  • Demirel S, Uyanık İ, Yurtsever A, Çelikten H, Uçar D (2014) Simultaneous bromate and nitrate reduction in water using sulfur-utilizing autotrophic and mixotrophic denitrification processes in a fixed bed column reactor. Clean-Soil Air Water 42(9):1185–1189

    Article  CAS  Google Scholar 

  • Downing LS, Nerenberg R (2007) Kinetics of microbial bromate reduction in a hydrogen-oxidizing, denitrifying biofilm reactor. Biotechnol Bioeng 98(3):543–550

    Article  CAS  PubMed  Google Scholar 

  • Fang JY, Shang C (2012) Bromate formation from bromide oxidation by the UV/persulfate process. Environ Sci Technol 46(16):8976–8983

    Article  CAS  PubMed  Google Scholar 

  • Fischbacher A, Löppenberg K, von Sonntag C, Schmidt TC (2015) A new reaction pathway for bromite to bromate in the ozonation of bromide. Environ Sci Technol 49(19):11714–11720

    Article  CAS  PubMed  Google Scholar 

  • Glaze WH, Weinberg HS, Cavanagh JE (1993) Evaluating the formation of brominated DBPs during ozonation. J Am Water Works Ass 85(1):96–103

    Article  CAS  Google Scholar 

  • Hijnen WAM, Voogt R, Veenendaal HR, van der Jagt H, van der Kooij D (1995) Bromate reduction by denitrifying bacteria. Appl Environ Microb 61:239–244

    Article  CAS  Google Scholar 

  • Hijnen W, Jong R, van der Kooij D (1999) Bromate removal in a denitrifying bioreactor used in water treatment. Water Res 33(4):1049–1053

    Article  CAS  Google Scholar 

  • Kirisits MJ, Snoeyink VL, Kruithof JP (2000) The reduction of bromate by granular activated carbon. Water Res 34(17):4250–4260

    Article  CAS  Google Scholar 

  • Kirisits MJ, Snoeyink VL, Inan H, Chee-Sanford JC, Raskin L, Brown JC (2001) Water quality factors affecting bromate reduction in biologically active carbon filters. Water Res 35(4):891–900

    Article  CAS  PubMed  Google Scholar 

  • Kirisits MJ, Snoeyink VL, Chee-Sanford JC, Daugherty BJ, Brown JC, Raskin L (2002) Effect of operating conditions on bromate removal efficiency in BAC filters. J Am Water Works Ass 94(4):182–193

    Article  CAS  Google Scholar 

  • Krasner SW, Glaze WH, Weinberg HS, Daniel PA, Najm IN (1993) Formation and control of bromate during ozonation of waters containing bromide. J Am Water Works Ass 85(1):73–81

    Article  CAS  Google Scholar 

  • Kruithof J, Meijers R (1995) Bromate formation by ozonation and advanced oxidation and potential options in drinking water treatment. Water Supply 13:93

    CAS  Google Scholar 

  • Lai CY, Lv PL, Dong QY, Yeo S, Rittmann BE, Zhao HP (2018) Bromate and nitrate bio-reduction coupled with poly-β-Hydroxybutyrate production in a methane-based membrane biofilm reactor. Environ Sci Technol 52(12):7024–7031

    Article  CAS  PubMed  Google Scholar 

  • Li H, Zhang H, Jiang M, Han Y, Lin H, Xia S (2017) Feasibility of bioreductive degradation of bromate in water by autohydrogenotrophic microorganisms. Res Environ Sci 30(6):960–966. https://doi.org/10.13198/j.issn.1001-6929.2017.02.07

    Article  Google Scholar 

  • Liu J, Yu J, Li D, Zhang Y, Yang M (2012) Reduction of bromate in a biological activated carbon filter under high bulk dissolved oxygen conditions and characterization of bromate-reducing isolates. Biochem Eng J 65:44–50

    Article  CAS  Google Scholar 

  • Liu Y, Yang Y, Pang S, Zhang L, Ma J, Luo C, Guan C, Jiang J (2018) Mechanistic insight into suppression of bromate formation by dissolved organic matters in sulfate radical-based advanced oxidation processes. Biochem Eng J 333:200–205

    CAS  Google Scholar 

  • Luo J, Wu M, Yuan Z, Guo J (2017) Biological bromate reduction driven by methane in a membrane biofilm reactor. Environ Sci Tech Lett 4(12):562–566

    Article  CAS  Google Scholar 

  • Lv P, Shi L, Wang Z, Rittmann B, Zhao H (2019) Methane oxidation coupled to perchlorate reduction in a membrane biofilm batch reactor. Sci Total Environ 667:9–15

    Article  CAS  PubMed  Google Scholar 

  • Mao Y, Xia Y, Wang Z, Zhang T (2014a) Reconstructing a Thauera genome from a hydrogenotrophic-denitrifying consortium using metagenomic sequence data. Appl Microbiol Biotechnol 98(15):6885–6895

    Article  CAS  PubMed  Google Scholar 

  • Mao Y, Yu K, Xia Y, Chao Y, Zhang T (2014b) Genome reconstruction and gene expression of “Candidatus Accumulibacter phosphatis” clade IB performing biological phosphorus removal. Environ Sci Technol 48(17):10363–10371

    Article  CAS  PubMed  Google Scholar 

  • Matos C, Velizarov S, Crespo JG, Reis MA (2005) Removal of bromate, perchlorate and nitrate from drinking water in an ion exchange membrane bioreactor. Water Sci Tech-W Sup 5(5):9–14

    Article  CAS  Google Scholar 

  • Matos CT, Velizarov S, Crespo JG, Reis MA (2006) Simultaneous removal of perchlorate and nitrate from drinking water using the ion exchange membrane bioreactor concept. Water Res 40(2):231–240

    Article  CAS  PubMed  Google Scholar 

  • Matos CT, Velizarov S, Reis MAM, Crespo JG (2008) Removal of bromate from drinking water using the ion exchange membrane bioreactor concept. Environ Sci Technol 42(20):7702–7708

    Article  CAS  PubMed  Google Scholar 

  • Matos CT, Sequeira AM, Velizarov S, Crespo JG, Reis MAM (2009) Nitrate removal in a closed marine system through the ion exchange membrane bioreactor. J Hazard Mater 166(1):428–434

    Article  CAS  PubMed  Google Scholar 

  • Nerenberg R, Rittmann B (2004) Hydrogen-based, hollow-fiber membrane biofilm reactor for reduction of perchlorate and other oxidized contaminants. Water Sci Technol 49(11–12):223–230

    Article  CAS  PubMed  Google Scholar 

  • Nicoson JS, Wang L, Becker RH, Huff Hartz KE, Muller CE, Margerum DW (2002) Kinetics and mechanisms of the ozone/bromite and ozone/chlorite reactions. Inorg Chem 41(11):2975–2980

    Article  CAS  PubMed  Google Scholar 

  • Oehmen A, Viegas R, Velizarov S, Reis MAM, Crespo JG (2006) Removal of heavy metals from drinking water supplies through the ion exchange membrane bioreactor. Desalination 199(1–3):405–407

    Article  CAS  Google Scholar 

  • Pinkernell U, von Gunten U (2001) Bromate minimization during ozonation: mechanistic considerations. Environ Sci Technol 35(12):2525–2531

    Article  CAS  PubMed  Google Scholar 

  • Plewa MJ, Wagner ED, Richardson SD, Thruston AD, Woo YT, McKague AB (2004) Chemical and biological characterization of newly discovered iodoacid drinking water disinfection byproducts. Environ Sci Technol 38(18):4713–4722

    Article  CAS  PubMed  Google Scholar 

  • Rittmann BE, Nerenberg R, Lee KC, Najm I, Gillogly TE, Lehman GE, Adham SS (2004) Hydrogen-based hollow-fiber membrane biofilm reactor (MBfR) for removing oxidized contaminants. Water Sci Tech-W Sup 4(1):127–133

    Article  CAS  Google Scholar 

  • Tamai N, Ishii T, Sato Y, Fujiya H, Muramatsu Y, Okabe N, Amachi S (2016) Bromate reduction by Rhodococcus sp. Br-6 in the presence of multiple redox mediators. Environ Sci Technol 50:10527–10534

    Article  CAS  PubMed  Google Scholar 

  • Van Ginkel CG, Middelhuis BJ, Spijk F, Abma WR (2005) Cometabolic reduction of bromate by a mixed culture of microorganisms using hydrogen gas in a gas-lift reactor. J Ind Microbiol Biotechnol 32(1):1–6

    Article  PubMed  CAS  Google Scholar 

  • Von Gunten U (2003) Ozonation of drinking water: Part II Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Res 37(7):1469–1487

    Article  CAS  Google Scholar 

  • Wolterink A, Schiltz E, Hagedoorn PL, Hagen WR, Kengen SWM, Stams AJM (2003) Characterization of the chlorate reductase from Pseudomonas chloritidismutans. J Bacteriol 185:3210–3213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu P, Janex ML, Savoye P, Cockx A, Lazarova V (2002) Wastewater disinfection by ozone: main parameters for process design. Water Res 36(4):1043–1055

    Article  CAS  PubMed  Google Scholar 

  • Zhong Y, Li X, Yang Q, Wang D, Yao F, Li X, Zhao J, Xu Q, Zhang C, Zeng G (2016) Complete bromate and nitrate reduction using hydrogen as the sole electron donor in a rotating biofilm-electrode reactor. J Hazard Mater 307:82–90

    Article  CAS  PubMed  Google Scholar 

  • Zhong Y, Yang Q, Fu G, Xu Y, Cheng Y, Chen C, Xiang R, Wen T, Li X, Zeng G (2018) Denitrifying microbial community with the ability to bromate reduction in a rotating biofilm-electrode reactor. J Hazard Mater 342:150–157

    Article  CAS  PubMed  Google Scholar 

  • Ziv-El MC, Rittmann BE (2009) Systematic evaluation of nitrate and perchlorate bioreduction kinetics in groundwater using a hydrogen-based membrane biofilm reactor. Water Res 43(1):173–181

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (Grant No. 51608329), Natural Science Foundation of Guangdong (Grant No. 2017A030313315), Shenzhen Science and Technology Project (Grant Nos. JCYJ20160520165135743, JCYJ20170412171918012), National Major Science and Technology Program for Water Pollution Control and Treatment (Grant No. 2017ZX07202) and Natural Science Foundation of Shenzhen University (Grant Nos. 827-000223 and 2016008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Mao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, X., Wang, D., Iqbal, W. et al. Microbial reduction of bromate: current status and prospects. Biodegradation 30, 365–374 (2019). https://doi.org/10.1007/s10532-019-09882-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-019-09882-x

Keywords

Navigation