Skip to main content
Log in

Effect of influent substrate ratio on anammox granular sludge: performance and kinetics

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Effect of influent substrate ratio on anammox process was studied in sequencing batch reactor. Operating temperature was fixed at 35 ± 1 °C. Influent pH and hydraulic retention time were 7.5 and 6 h, respectively. When influent NO2 -N/NH4 +-N was no more than 2.0, total nitrogen removal rate (TNRR) increased whereas NH4 +-N removal rate stabilized at 0.32 kg/(m3 d). ΔNO2 -N/ΔNH4 +-N increased with enhancing NO2 -N/NH4 +-N. When NO2 -N/NH4 +-N was 4.5, ΔNO2 -N/ΔNH4 +-N was 1.98, which was much higher than theoretical value (1.32). The IC50 of NO2 -N was 289 mg/L and anammox activity was inhibited at high NO2 -N/NH4 +-N ratio. With regard to influent NH4 +-N/NO2 -N, the maximum NH4 +-N removal rate was 0.36 kg/(m3 d), which occurred at the ratio of 4.0. Anammox activity was inhibited when influent NH4 +-N/NO2 -N was higher than 5.0. With influent NO3 -N/NH4 +-N of 2.5–6.5, NH4 +-N removal rate and NRR were stabilized at 0.33 and 0.40 kg/(m3 d), respectively. When the ratio was higher than 6.5, nitrogen removal would be worsened. The inhibitory threshold concentration of NO2 -N was lower than NH4 +-N and NO3 -N. Anammox bacteria were more sensitive to NO2 -N than NH4 +-N and NO3 -N. TNRR would be enhanced with increasing nitrogen loading rate, but sludge floatation occurred at high nitrogen loading shock. The Han-Levenspiel could be applied to simulate nitrogen removal resulting from NO2 -N inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aiba S, Shoda M, Nagatani M (1968) Kinetics of product inhibition in alcohol fermentation. Biotechnol Bioeng 10(6):845–864

    Article  CAS  Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723

    Article  Google Scholar 

  • Aktan CK, Yapsakli K, Mertoglu B (2012) Inhibitory effects of free ammonia on Anammox bacteria. Biodegradation 23(5):751–762

    Article  CAS  PubMed  Google Scholar 

  • Almeida JS, Júlio SM, Reis MAM, Carrondo MJT (1995) Nitrite inhibition of denitrification by Pseudomonas fluorescens. Biotechnol Bioeng 46(3):194–201

    Article  CAS  PubMed  Google Scholar 

  • APHA (1998) Standard methods for water and wastewater examination. American Public Health Association, Washington

    Google Scholar 

  • Bettazzi E, Caffaz S, Vannini C, Lubello C (2010) Nitrite inhibition and intermediates effects on Anammox bacteria: a batch-scale experimental study. Process Biochem 45(4):573–580

    Article  CAS  Google Scholar 

  • Carvajal-Arroyo JM, Sun W, Sierra-Alvarez R, Field JA (2013) Inhibition of anaerobic ammonium oxidizing (anammox) enrichment cultures by substrates, metabolites and common wastewater constituents. Chemosphere 91(1):22–27

    Article  CAS  PubMed  Google Scholar 

  • Carvajal-Arroyo JM, Puyol D, Li G, Lucero-Acuña A, Sierra-Álvarez R, Field JA (2014a) Pre-exposure to nitrite in the absence of ammonium strongly inhibits anammox. Water Res 48:52–60

    Article  CAS  PubMed  Google Scholar 

  • Carvajal-Arroyo JM, Puyol D, Li G, Sierra-Álvarez R, Field JA (2014b) The role of pH on the resistance of resting- and active anammox bacteria to NO2 inhibition. Biotechnol Bioeng 111(10):1949–1956

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Ji Q, Zheng P, Chen T, Wang C, Mahmood Q (2010) Floatation and control of granular sludge in a high-rate anammox reactor. Water Res 44(11):3321–3328

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Zheng P, Shen L, Ding S, Mahmood Q (2011) Kinetic characteristics and microbial community of Anammox-EGSB reactor. J Hazard Mater 190(1):28–35

    Article  CAS  PubMed  Google Scholar 

  • Cho S, Takahashi Y, Fujii N, Yamada Y, Satoh H, Okabe S (2010) Nitrogen removal performance and microbial community analysis of an anaerobic up-flow granular bed anammox reactor. Chemosphere 78(9):1129–1135

    Article  CAS  PubMed  Google Scholar 

  • Dapena-Mora A, Fernández I, Campos JL, Mosquera-Corral A, Méndez R, Jetten MSM (2007) Evaluation of activity and inhibition effects on anammox process by batch tests based on the nitrogen gas production. Enzyme Microb Technol 40(4):859–865

    Article  CAS  Google Scholar 

  • De Prá MC, Kunz A, Bortoli M, Scussiato LA, Coldebella A, Vanotti M, Soares HM (2016) Kinetic models for nitrogen inhibition in ANAMMOX and nitrification process on deammonification system at room temperature. Bioresour Technol 202:33–41

    Article  PubMed  Google Scholar 

  • Edwards VH (1970) The influence of high substrate concentrations on microbial kinetics. Biotechnol Bioeng 12(5):679–712

    Article  CAS  PubMed  Google Scholar 

  • Egli K, Fanger U, Alvarez PJJ, Siegrist H, van der Meer JR, Zehnder AJB (2001) Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Arch Microbiol 175(3):198–207

    Article  CAS  PubMed  Google Scholar 

  • Fernandez I, Dosta J, Fajardo C, Campos JL, Mosquera-Corral A, Mendez R (2012) Short- and long-term effects of ammonium and nitrite on the Anammox process. J Environ Manag 95(Suppl):S170–S174

    Article  CAS  Google Scholar 

  • Gallert C, Winter J (1997) Mesophilic and thermophilic anaerobic digestion of source-sorted organic wastes: effect of ammonia on glucose degradation and methane production. Appl Microbiol Biotechnol 48(3):405–410

    Article  CAS  Google Scholar 

  • Han K, Levenspiel O (1988) Extended monod kinetics for substrate, product, and cell inhibition. Biotechnol Bioeng 32(4):430–447

    Article  CAS  PubMed  Google Scholar 

  • Isaka K, Sumino T, Tsuneda S (2007) High nitrogen removal performance at moderately low temperature utilizing anaerobic ammonium oxidation reactions. J Biosci Bioeng 103(5):486–490

    Article  CAS  PubMed  Google Scholar 

  • Jaroszynski LW, Cicek N, Sparling R, Oleszkiewicz JA (2011) Importance of the operating pH in maintaining the stability of anoxic ammonium oxidation (anammox) activity in moving bed biofilm reactors. Bioresour Technol 102(14):7051–7056

    Article  CAS  PubMed  Google Scholar 

  • Jaroszynski LW, Cicek N, Sparling R, Oleszkiewicz JA (2012) Impact of free ammonia on anammox rates (anoxic ammonium oxidation) in a moving bed biofilm reactor. Chemosphere 88(2):188–195

    Article  CAS  PubMed  Google Scholar 

  • Jetten MSM, Cirpus I, Kartal B, van Niftrik L, van de Pas-Schoonen KT, Sliekers O, Haaijer S, van der Star W, Schmid M, van de Vossenberg J, Schmidt I, Harhangi H, van Loosdrecht M, Gijs Kuenen J, Op den Camp H, Strous M (2005) 1994-2004: 10 years of research on the anaerobic oxidation of ammonium. Biochem Soc T 33(1):119–123

    Article  CAS  Google Scholar 

  • Jin RC, Xing BS, Yu JJ, Qin TY, Chen SX (2013) The importance of the substrate ratio in the operation of the Anammox process in upflow biofilter. Ecol Eng 53(3):130–137

    Article  Google Scholar 

  • Kartal B, Kuypers MMM, Lavik G, Schalk J, Op den Camp HJM, Jetten MSM, Strous M (2007) Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium. Environ Microbiol 9(3):635–642

    Article  CAS  PubMed  Google Scholar 

  • Kimura Y, Isaka K, Kazama F, Sumino T (2010) Effects of nitrite inhibition on anaerobic ammonium oxidation. Appl Microbiol Biotechnol 86(1):359–365

    Article  CAS  PubMed  Google Scholar 

  • Kroiss H, Schweighofer P, Frey W, Matsche N (1992) Nitrification inhibition-a source identification method for combinedmunicipal and/or industrial wastewater treatment plants. Water Sci Technol 26(5–6):1135–1146

    CAS  Google Scholar 

  • Lan C, Kumar M, Wang C, Lin J (2011) Development of simultaneous partial nitrification, anammox and denitrification (SNAD) process in a sequential batch reactor. Bioresour Technol 102:5514–5519

    Article  CAS  PubMed  Google Scholar 

  • Li G, Vilcherrez D, Carvajal-Arroyo JM, Sierra-Alvarez R, Field JA (2016) Exogenous nitrate attenuates nitrite toxicity to anaerobic ammonium oxidizing (anammox) bacteria. Chemosphere 144:2360–2367

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhu W, Dong H, Wang D (2017) Performance and kinetics of ANAMMOX granular sludge with pH shock in a sequencing batch reactor. Biodegradation 28:245–259

    Article  CAS  PubMed  Google Scholar 

  • Lotti T, van der Star WRL, Kleerebezem R, Lubello C, van Loosdrecht MCM (2012) The effect of nitrite inhibition on the anammox process. Water Res 46(8):2559–2569

    Article  CAS  PubMed  Google Scholar 

  • Luong JHT (1987) Generalization of monod kinetics for analysis of growth data with substrate inhibition. Biotechnol Bioeng 29(2):242–248

    Article  CAS  PubMed  Google Scholar 

  • Mehl M, Daiber A, Herold S, Shoun H, Ullrich V (1999) Peroxynitrite reaction with heme proteins. Nitric Oxide 3(2):142–152

    Article  CAS  PubMed  Google Scholar 

  • Niu Q, He S, Zhang Y, Zhang Y, Yang M, Li Y (2016) Bio-kinetics evaluation and batch modeling of the anammox mixed culture in UASB and EGSB reactors: batch performance comparison and kinetic model assessment. RSC Adv 6(5):3487–3500

    Article  CAS  Google Scholar 

  • Oshiki M, Shimokawa M, Fujii N, Satoh H, Okabe S (2011) Physiological characteristics of the anaerobic ammonium-oxidizing bacterium ‘Candidatus Brocadia sinica’. Microbiology 157(6):1706–1713

    Article  CAS  PubMed  Google Scholar 

  • Philips S, Laanbroek HJ, Verstraete W (2002) Origin, causes and effects of increased nitrite concentrations in aquatic environments. Rev Environ Sci Biotechnol 1(2):115–141

    Article  CAS  Google Scholar 

  • Scaglione D, Ruscalleda M, Ficara E, Balaguer MD, Colprim J (2012) Response to high nitrite concentrations of anammox biomass from two SBR fed on synthetic wastewater and landfill leachate. Chem Eng J 209(41):62–68

    Article  CAS  Google Scholar 

  • Strous M, van Gerven E, Zheng P, Gijs Kuenen J, Jetten MSM (1997) Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (Anammox) process in different reactor configurations. Water Res 31(8):1955–1962

    Article  CAS  Google Scholar 

  • Strous M, Heijnen JJ, Gijs Kuenen J, Jetten MSM (1998) The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl Microbiol Biotechnol 50(5):589–596

    Article  CAS  Google Scholar 

  • Strous M, Kuenen JG, Jetten MSM (1999) Key physiology of anaerobic ammonium oxidation. Appl Environ Microb 65(7):3248–3250

    CAS  Google Scholar 

  • Tang CJ, Zheng P, Mahmood Q, Chen JW (2009) Start-up and inhibition analysis of the Anammox process seeded with anaerobic granular sludge. J Ind Microbiol Biotechnol 36(8):1093–1100

    Article  CAS  PubMed  Google Scholar 

  • Tang CJ, Zheng P, Hu BL, Chen JW, Wang CH (2010) Influence of substrates on nitrogen removal performance and microbiology of anaerobic ammonium oxidation by operating two UASB reactors fed with different substrate levels. J Hazard Mater 181(1):19–26

    Article  CAS  PubMed  Google Scholar 

  • Tao Y, Gao DW, Fu Y, Wu WM, Ren NQ (2012) Impact of reactor configuration on anammox process start-up: MBR versus SBR. Bioresour Technol 104(1):73–80

    Article  CAS  PubMed  Google Scholar 

  • Tseng MM, Wayman M (1975) Kinetics of yeast growth:inhibition-threshold substrate concentrations. Can J Microbiol 21(7):994–1003

    Article  CAS  PubMed  Google Scholar 

  • Tsushima I, Ogasawara Y, Kindaichi T, Satoh H, Okabe S (2007) Development of high-rate anaerobic ammonium-oxidizing (anammox) biofilm reactors. Water Res 41(8):1623–1634

    Article  CAS  PubMed  Google Scholar 

  • van de Graaf AA, de Bruijn P, Robertson LA, Jetten MSM, Kuenen JG (1996) Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology 142(8):2187–2196

    Article  Google Scholar 

  • van der Star WRL, Abma WR, Blommers D, Mulder JW, Tokutomi T, Strous M, Picioreanu C, van Loosdrecht MCM (2007) Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam. Water Res 41(18):4149–4163

    Article  PubMed  Google Scholar 

  • van Hulle SWH, Vandeweyer HJP, Meesschaert BD, Vanrolleghem PA, Dejans P, Dumoulin A (2010) Engineering aspects and practical application of autotrophic nitrogen removal from nitrogen rich streams. Chem Eng J 162(1):1–20

    Article  Google Scholar 

  • Wang Y, Hu X, Jiang B, Song Z, Ma Y (2016) Symbiotic relationship analysis of predominant bacteria in a lab-scale anammox UASB bioreactor. Environ Sci Pollut R 23(8):7615–7626

    Article  CAS  Google Scholar 

  • Yang J, Zhang L, Hira D, Fukuzaki Y, Furukawa K (2011) High-rate nitrogen removal by the Anammox process at ambient temperature. Bioresour Technol 102(2):672–676

    Article  CAS  PubMed  Google Scholar 

  • Yoda M, Nishimura S (1997) Controlling granular, sludge floatation in UASB reactors. Water Sci Technol 36(6–7):165–173

    CAS  Google Scholar 

  • Zhang Y, He S, Niu Q, Qi W, Li YY (2016) Characterization of three types of inhibition and their recovery processes in an anammox UASB reactor. Biochem Eng J 109:212–221

    Article  CAS  Google Scholar 

  • Zhu W, Li J, Dong H, Wang Dan, Zhang Peiyu (2017a) Nitrogen removal performance and operation strategy of anammox process under temperature shock. Biodegradation 28(4):261–274

    Article  CAS  PubMed  Google Scholar 

  • Zhu W, Zhang P, Dong H, Li J (2017b) Effect of carbon source on nitrogen removal in anaerobic ammonium oxidation (anammox) process. J Biosci Bioeng 123(4):497–504

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was financially supported by National Natural Scientific Foundation (41376016), Shandong Provincial Natural Science Foundation (BS2015HZ007) and Shandong Province Higher Educational Science and Technology Program (J15LC61). The authors would like to thank the editor and anonymous reviewers for their editing and review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Li, J., Dong, H. et al. Effect of influent substrate ratio on anammox granular sludge: performance and kinetics. Biodegradation 28, 437–452 (2017). https://doi.org/10.1007/s10532-017-9807-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-017-9807-8

Keywords

Navigation