Skip to main content
Log in

Effects of sulfur-metabolizing bacterial community diversity on H2S emission behavior in landfills with different operation modes

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Hydrogen sulfide (H2S) is one of the major contributors to offensive odors from landfills, and its concentration differs under different operation modes. This study examined the distribution of H2S emission from different landfill depths under different operation modes (anaerobic, semi-aerobic, semi-aerobic transformation, and the three operation modes with additional leachate recirculation). The microbial community (especially the sulfur-metabolizing bacterial community) was investigated using high-throughput sequencing technology. The results showed that the semi-aerobic mode could substantially lower the risks of H2S pollution in landfills, which might be because of the difference in biological processes related to sulfur metabolism driven by functional microbes. A myriad of factors are responsible for mutually shaping the sulfur-metabolizing bacterial community composition in landfills that might subsequently affect the behavior of H2S emission in landfills. The differences in abundance of the genera Acinetobacter and Paracoccus (phylum Proteobacteria) caused by environmental factors might explain the differences in H2S emission. H2S odor control could be realized if the related functional microbe diversity can be influenced by adjustments to landfill operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • APHA (1999) Standard methods for the examination of water and wastewater. APHA, Washington, DC

    Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jorgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  CAS  PubMed  Google Scholar 

  • Caldwell SL, Laidler JR, Brewer EA, Eberly JO, Sandborgh SC, Colwell FS (2008) Anaerobic oxidation of methane: mechanisms, bioenergetics, and the ecology of associated microorganisms. Environ Sci Technol 42:6791–6799

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Cai CY, Hu B, Xu Y, Zheng XJ, Chen YX, Wu WX (2012) Characterization and control of odorous gases at a landfill site: a case study in Hangzhou, China. Waste Manage 32:317–326

    Article  CAS  Google Scholar 

  • Euzeby JP (1997) List of bacterial names with standing in nomenclature: a folder available on the internet. Int J Syst Bacteriol 47:590–592

    Article  CAS  PubMed  Google Scholar 

  • Fang CR, Long YY, Lu YY, Shen DS (2009a) Behavior of dimethyl phthalate (DMP) in simulated landfill bioreactors with different operation modes. Int Biodeter Biodegr 63:732–738

    Article  CAS  Google Scholar 

  • Fang CR, Long YY, Shen DS (2009b) Comparison on the removal of phthalic acid diesters in a bioreactor landfill and a conventional landfill. Bioresour Technol 100:5664–5670

    Article  CAS  PubMed  Google Scholar 

  • Fang Y, Du Y, Feng H, Hu LF, Shen DS, Long YY (2015) Sulfide oxidation and nitrate reduction for potential mitigation of H2S in landfills. Biodegradation 26:115–126

    Article  CAS  PubMed  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103:626–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Firer D, Friedler E, Lahav O (2008) Control of sulfide in sewer systems by dosage of iron salts: comparison between theoretical and experimental results, and practical implications. Sci Total Environ 392:145–156

    Article  CAS  PubMed  Google Scholar 

  • Frierich CG, Quentmeier A, Bardischewsky F, Rother D, Orawski G, Hellwig P, Fischer J (2008) Redox control of chemotrophic sulfur oxidation of Paracoccus pantotrophus. In: Dahl C, Frierich CG (eds) Microbial Sulfur Metabolism. Springer, Heidelberg, Berlin, pp 139–150

    Chapter  Google Scholar 

  • Hirata O, Matsufuji Y, Tachifuji A, Yanase R (2012) Waste stabilization mechanism by a recirculatory semi-aerobic landfill with the aeration system. J Mater Cycles Waste Manage 14:47–51

    Article  CAS  Google Scholar 

  • Horinouchi M, Kasuga K, Nojiri H, Yamane H, Omori T (1997) Cloning and characterization of genes encoding an enzyme which oxidizes dimethyl sulfide in Acinetobacter sp. strain 20B. FEMS Microbiol Lett 155:99–105

    Article  CAS  PubMed  Google Scholar 

  • Hornstrom E (2002) Phytoplankton in 63 limed lakes in comparison with the distribution in 500 untreated lakes with varying pH. Hydrobiologia 47:115–126

    Article  Google Scholar 

  • Kelly DP, Shergill JK, Lu WP, Wood AP (1997) Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie Van Leeuwenhoek 71:95–107

    Article  CAS  PubMed  Google Scholar 

  • Kim KH, Choi YJ, Jeon EC, Sunwoo Y (2005) Characterization of malodorous sulfur compounds in landfill gas. Atmos Environ 39:1103–1112

    Article  CAS  Google Scholar 

  • Köchling T, Sanz JL, Gavazza S, Florencio L (2015) Analysis of microbial community structure and composition in leachates from a young landfill by 454 pyrosequencing. Appl Microbiol Biotechnol 99:5657–5668

    Article  PubMed  Google Scholar 

  • Li WB, Yao J, Tao PP, Guo MT, Feng XY, He YN, Fang CR, Shen DS (2010) A comparative study on two extraction procedures in speciation of iron in municipal solid waste. J Hazard Mater 182:640–648

    Article  CAS  PubMed  Google Scholar 

  • Long Y, Guo QW, Fang CR, Zhu YM, Shen DS (2008) In situ nitrogen removal in phase-separate bioreactor landfill. Bioresour Technol 99:5352–5361

    Article  CAS  PubMed  Google Scholar 

  • Long YY, Hu LF, Fang CR, He R, Shen DS (2009) Releasing behavior of zinc in recirculated bioreactor landfill. Sci Total Environ 407:4110–4116

    Article  CAS  PubMed  Google Scholar 

  • Long YY, Hu LF, Wang J, Fang CR, He R, Shen DS (2010a) Bio-immobilization of Cu and Zn in recirculated bioreactor landfill. Environ Sci Pollut R 17:1539–1546

    Article  CAS  Google Scholar 

  • Long YY, Shen DS, Wang HT, Lu WJ (2010b) Migration behavior of Cu and Zn in landfill with different operation modes. J Hazard Mater 179:883–890

    Article  CAS  PubMed  Google Scholar 

  • Lu RK (1999) Agriculture chemical analysis of soil. China Agricultural Scientech Press, Beijing (in Chinese)

    Google Scholar 

  • Luo JF, Tian GL, Lin WT (2013) Enrichment, isolation and identification of sulfur-oxidizing bacteria from sulfide removing bioreactor. J Environ Sci 25:1393–1399

    Article  CAS  Google Scholar 

  • Mahmood Q, Hu BL, Cai J, Zheng P, Azim MR, Jilani G, Islam E (2009) Isolation of Ochrobactrum sp. QZ2 from sulfide and nitrite treatment system. J Hazard Mater 165:558–565

    Article  CAS  PubMed  Google Scholar 

  • Masoud W, Takamiya M, Vogensen FK, Lillevang S, Al-Soud WA, Sørensen SJ, Jakobsen M (2011) Characterization of bacterial populations in Danish raw milk cheeses made with different starter cultures by denaturating gradient gel electrophoresis and pyrosequencing. Int Dairy J 21:142–148

    Article  CAS  Google Scholar 

  • Mescia D, Hernández SP, Conoci A, Russo N (2011) MSW landfill biogas desulfurization. Int J Hydrogen Energy 36:7884–7890

    Article  CAS  Google Scholar 

  • Michaelis W, Seifert R, Nauhaus K, Treude T, Thiel V, Blumenberg M, Knittel K, Gieseke A, Peterknecht K, Pape T, Boetius A, Amann R, Jorgensen BB, Widdel F, Peckmann J, Pimenov NV, Gulin MB (2002) Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science 297:1013–1015

    Article  CAS  PubMed  Google Scholar 

  • Qiu CL, Liu JX, Peng ML (1992) Amendment method for sulfide content of soil. Public Heath 8:549–550

    Google Scholar 

  • Schauer R, Røy H, Augustin N, Gennerich HH, Peters M, Wenzhoefer F, Amann R, Meyerdierks A (2011) Bacterial sulfur cycling shapes microbial communities in surface sediments of an ultramafic hydrothermal vent field. Environ Microbiol 13:2633–2648

    Article  CAS  PubMed  Google Scholar 

  • Sener B, Süzen ML, Doyuran V (2006) Landfill site selection by using geographic information systems. Environ Geol 49:376–388

    Article  Google Scholar 

  • Sorokin DY, Teske A, Robertson LA, Kuenen JG (1999) Anaerobic oxidation of thiosulfate to tetrathionate by obligately heterotrophic bacteria, belonging to the Pseudomonas stutzeri group. FEMS Microbiol Ecol 30:113–123

    Article  CAS  PubMed  Google Scholar 

  • Zhang JB, Zhang T, Ma K, Chen GH, Zhang DY, Wei XH (2008) Isolation and identification of the thermophilic alkaline desulphuricant strain. Sci China, Ser B 51:158–165

    Article  CAS  Google Scholar 

  • Zhang Y, Zhao ZH, Chen CTA, Tang K, Su JQ, Jiao NZ (2012) Sulfur metabolizing microbes dominate microbial communities in andesite-hosted shallow-sea hydrothermal systems. PLoS One 7:e44593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XQ, Feng HJ, Liang YX, Zhao ZQ, Long YY, Fang Y, Wang MZ, Yin J, Shen DS (2015) The relief of microtherm inhibition for p-fluoronitrobenzene mineralization using electrical stimulation at low temperatures. Appl Microbiol Biotechnol 99(10):4485–4494

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (41471408 and 41101453) and the Natural Science Foundation of Zhejiang Province (LY14D010001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuyang Long.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Du, Y., Hu, L. et al. Effects of sulfur-metabolizing bacterial community diversity on H2S emission behavior in landfills with different operation modes. Biodegradation 27, 237–246 (2016). https://doi.org/10.1007/s10532-016-9769-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-016-9769-2

Keywords

Navigation