Skip to main content
Log in

Degradation of selected (bio-)surfactants by bacterial cultures monitored by calorimetric methods

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The subjects of the article are investigations concerning the ability of both Rhodococcus opacus 1CP and mixed bacterial cultures to use selected surfactants as sole carbon and energy source. In a comparative manner the biosurfactants rhamnolipid, sophorolipid and trehalose tetraester, and the synthetic surfactant Tween 80 were examined. Particular emphasis was put on a combinatorial approach to determine quantitatively the degree of surfactant degradation by applying calorimetry, thermodynamic calculations and mass spectrometry, HPLC as well as determination of biomass. The pure bacterial strain R. opacus was only able to metabolize a part of the synthetic surfactant Tween 80, whereas the mixed bacterial cultures degraded all of the applied surfactants. Exclusive for the biosurfactant rhamnolipid a complete microbial degradation could be demonstrated. In the case of the other surfactants only primary degradation was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508

    Article  CAS  PubMed  Google Scholar 

  • Bast E (1999) Mikrobiologische Methoden – Eine Einführung in grundlegende Arbeitstechniken. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Battley EH (1999) The thermodynamics of microbial growth. In: Kemp RB (ed) From macromolecules to man. Handbook of thermal analysis and calorimetry, vol 4. Elsevier, Amsterdam, pp 219–266

    Google Scholar 

  • Cordier J-L, Butsch BM, Birou B, van Stockar U (1987) The relationship between elemental composition and heat of combustion of microbial biomass. Appl Microbiol Biotechnol 25:305–312

    Article  CAS  Google Scholar 

  • Czeschka K (1995) Einfluss von Starterkulturen und Tensiden auf den Abbau von Kohlenwasserstoffen in Bodenfestbettreaktoren. Dissertation, TU Braunschweig

  • Dean SM, Jin Y, Cha DK, Wilson SV, Radosevich M (2001) Phenanthrene degradation in soils co-inoculated with phenanthrene-degrading and biosurfactant-producing bacteria. J Environ Qual 30:1126–1133

    Article  CAS  PubMed  Google Scholar 

  • Dorn E, Hellwig M, Reineke W, Knackmus H-J (1974) Isolation and characterization of a 3-chlorobenzoate degrading pseudomonad. Arch Microbiol 99:61–70

    Article  PubMed  Google Scholar 

  • Franzetti A, Gennaro PD, Bevilacqua A, Papacchini M, Bestetti G (2006) Environmental features of two commercial surfactants widely used in soil remediation. Chemosphere 62:1474–1480

    Article  CAS  PubMed  Google Scholar 

  • Frister A (2006) Trehalosetetraester aus Rhodococcus erythropolis B7g: Optimierung der Herstellung, Abbaubarkeit und Beeinflussung des Abbaus organischer Schadstoffe. Diploma thesis, TU Bergakademie Freiberg

  • Gorlatov SN, Maltseva OV, Shevchenko VI, Golovleva LA (1989) Degradation of chlorphenols by Rhodococcus erythropolis. Microbiology (English translation of Mikrobiologiya) 58:647–651

    Google Scholar 

  • Haba E, Pinazo A, Jauregui O, Espuny MJ, Infante MR, Manresa A (2003) Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Biotechnol Bioeng 81(3):316–322

    Article  CAS  PubMed  Google Scholar 

  • Kim IS, Park J-S, Kim K-W (2001) Enhanced biodegradation of polycyclic aromatic hydrocarbons using non-ionic surfactants in soil slurry. Appl Geochem 16:1419–1428

    Article  CAS  Google Scholar 

  • Kitamoto D, Isoda H, Nakahara T (2002) Functions and potential applications of glycolipid biosurfactants—from energy-saving materials to gene delivery carriers. J Biosci Bioeng 94:187–201

    Article  CAS  PubMed  Google Scholar 

  • Kretzschmer A, Bock H, Wagner F (1982) Chemical and physical characterization of interfacial-active lipids from Rhodococcus erythropolis grown on n-alkanes. Appl Environ Microbiol 44:864–870

    Google Scholar 

  • Maier RM, Soberón–Chávez S (2000) Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol 54:625–633

    Article  CAS  PubMed  Google Scholar 

  • Mohan PK, Nakhla G, Yanful EK (2006) Biokinetics of biodegradation of surfactants under aerobic, anoxic and anaerobic conditions. Water Res 40:533–540

    Article  CAS  PubMed  Google Scholar 

  • Moiseeva OV, Lin’ko EV, Baskunov BP, Golovleva LA (1999) Degradation of 2-chlorophenol and 3-chlorobenzoate by Rhodococcus opacus 1CP. Microbiology (English translation of Mikrobiologiya) 68:400–405

    CAS  Google Scholar 

  • Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133(2):183–198

    Article  CAS  PubMed  Google Scholar 

  • Niescher S, Wray V, Lang S, Kaschabek SR, Schlömann M (2006) Identification and structural characterization of novel trehalose dinocardiomycolates from n-alkane-grown Rhodococcus opacus 1CP. Appl Microbiol Biotechnol 70:605–611

    Article  CAS  PubMed  Google Scholar 

  • Poremba K, Gunkel W, Lang S, Wagner F (1991) Marine biosurfactants, III. Toxicity testing with marine microorganisms and comparison with synthetic surfactants. Z Naturforsch 46c:210–216

    Google Scholar 

  • Schöberl P (1989) Basic principles of LAS biodegradation. Tenside Surfactant Deterg 26:86–94

    Google Scholar 

  • Singh P, Cameotra SS (2004) Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol 22:142–146

    Article  CAS  PubMed  Google Scholar 

  • Sunner S, Wadsö I (1966) Precision calorimetric system. Sci Tools 13:1–6

    CAS  Google Scholar 

  • van Ginkel CG (1996) Complete degradation of xenobiotic surfactants by consortia of aerobic microorganisms. Biodegradation 7:151–164

    Article  PubMed  Google Scholar 

  • Volkering F, Breure AM, Rulkens WH (1998) Microbiological aspects of surfactant use for biological soil remediation. Biodegradation 8:401–417

    Article  CAS  Google Scholar 

  • von Stockar U, Liu J-S (1999) Does microbial life always feed on negative entropy? Thermodynamic analysis of microbial growth. Biochim Biophys Acta 1412:191–211

    Article  Google Scholar 

  • Winkelmann M, Hüttl R, Wolf G (2004) Application of batch-calorimetry for the investigation of microbial activity. Thermochim Acta 415:75–82

    Article  CAS  Google Scholar 

  • Winkelmann M, Hunger N, Hüttl R, Wolf G (2009) Calorimetric investigations on the degradation of water insoluble hydrocarbons by the bacterium Rhodococcus opacus 1CP. Thermochim Acta 482:12–16

    Article  CAS  Google Scholar 

  • Zhang Y, Miller RM (1992) Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl Environ Microbiol 58:3276–3282

    CAS  PubMed  Google Scholar 

  • Zhang Y, Maier WJ, Miller RM (1997) Effect of rhamnolipids on the dissolution, bioavailability, and biodegradation of phenanthrene. Environ Sci Technol 31:2211–2217

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge DN D. Hempelt from the Institute of Biochemistry at TU Dresden for the mass-spectral analysis. For financial support we thank the Scholarship Programme for Graduates of the Free State of Saxony as well as the German Federal Environmental Foundation (DBU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regina Hüttl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frank, N., Lißner, A., Winkelmann, M. et al. Degradation of selected (bio-)surfactants by bacterial cultures monitored by calorimetric methods. Biodegradation 21, 179–191 (2010). https://doi.org/10.1007/s10532-009-9292-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-009-9292-9

Keywords

Navigation