Skip to main content
Log in

Microbial degradation and metabolic pathway of pyridine by a Paracoccus sp. strain BW001

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

A bacterial strain using pyridine as sole carbon, nitrogen and energy source was isolated from the activated sludge of a coking wastewater treatment plant. By means of morphologic observation, physiological characteristics study and 16S rRNA gene sequence analysis, the strain was identified as the species of Paracoccus. The strain could degrade 2,614 mg l−1 of pyridine completely within 49.5 h. Experiment designed to track the metabolic pathway showed that pyridine ring was cleaved between the C2 and N, then the mineralization of the carbonous intermediate products may comply with the early proposed pathway and the transformation of the nitrogen may proceed on a new pathway of simultaneous heterotrophic nitrification and aerobic denitrification. During the degradation, NH3-N occurred and increased along with the decrease of pyridine in the solution; but the total nitrogen decreased steadily and equaled to the quantity of NH3-N when pyridine was degraded completely. Adding glucose into the medium as the extra carbon source would expedite the biodegradation of pyridine and the transformation of the nitrogen. The fragments of nirS gene and nosZ gene were amplified which implied that the BW001 had the potential abilities to reduce NO2 to NO and/or N2O, and then to N2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    PubMed  CAS  Google Scholar 

  • Baker SC, Ferguson SJ, Ludwig B, Page MD, Richter OMH, van Spanning RJM (1998) Molecular genetics of the genus Paracoccus: metabolically versatile bacteria with bioenergetic flexibility. Microbiol Mol Biol Rev 62(4):1046–1078

    PubMed  CAS  Google Scholar 

  • Bothe H, Jost G, Schloter M, Ward BB, Witzel KP (2000) Molecular analysis of ammonia oxidation and denitrification in natural environments. FEMS Microbiol Rev 24(5):673–690

    Article  PubMed  CAS  Google Scholar 

  • Braker G, Fesefeldt A, Witzel KP (1998) Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl Environ Microbiol 64(10):3769–3775

    PubMed  CAS  Google Scholar 

  • Brinkmann U, Babel W (1996) Simultaneous utilization of pyridine and fructose by Rhodococcus opacus UFZ B 408 without an external nitrogen source. Appl Microbiol Biotechnol 45(1–2):217–223

    Article  PubMed  CAS  Google Scholar 

  • Crossman LC, Moir JWB, Enticknap JJ, Richardson DJ, Spiro S (1997) Heterologous expression of heterotrophic nitrification genes. Microbiology-UK 143:3775–3783

    Article  CAS  Google Scholar 

  • Devereuv R, Wilkinson SS (2004) Amplification of ribosomal RNA sequences. Molecular microbial ecology manual, 2nd edn. Kluwer Academic Publishers Press, Netherlands, pp 509–522

    Google Scholar 

  • Fetzner S (1998) Bacterial degradation of pyridine, indole, quinoline, and their derivatives under different redox conditions. Appl Microbiol Biotechnol 49(3):237–250

    Article  CAS  Google Scholar 

  • Hallin S, Lindgren PE (1999) PCR detection of genes encoding nitrite reductase in denitrifying bacteria. Appl Environ Microbiol 65(4):1652–1657

    PubMed  CAS  Google Scholar 

  • Heylen K, Gevers D, Vanparys B, Wittebolle L, Geets J, Boon N, De Vos P (2006) The incidence of nirS and nirK and their genetic heterogeneity in cultivated denitrifiers. Environ Microbiol 8(11):2012–2021

    Article  PubMed  CAS  Google Scholar 

  • Horiba Y, Khan ST, Hiraishi A (2005) Characterization of the microbial community and culturable denitrifying bacteria in a solid-phase denitrification process using poly(ε-caprolactone) as the carbon and energy source. Microb Environ 20(1):25–33

    Article  Google Scholar 

  • Houghton C, Cain RB (1972) Microbial metabolism of the pyridine ring. Formation of pyridinediols (dihydroxypyridines) as intermediates in the degradation of pyridine compounds by microorganisms. Biochem J 130(3):879–893

    PubMed  CAS  Google Scholar 

  • Jain RK, Kapur M, Labana S, Lal B, Sarma PM, Bhattacharya D, Thakur IS (2005) Microbial diversity: application of microorganisms for the biodegradation of xenobiotics. Curr Sci 89(1):101–112

    CAS  Google Scholar 

  • Jia KZ, Cui ZL, He J, Guo P, Li SP (2006) Isolation and characterization of a denitrifying monocrotophos-degrading Paracoccus sp. M-1. FEMS Microbiol Lett 263(2):155–162

    Article  PubMed  CAS  Google Scholar 

  • Kilbane JJ (2005) Metabolic engineering to develop a pathway for the selective cleavage of carbon–nitrogen bonds. Annual Technical Report, pp 13–14

  • Kim MK, Singleton I, Yin CR, Quan ZX, Lee M, Lee ST (2006) Influence of phenol on the biodegradation of pyridine by freely suspended and immobilized Pseudomonas putida MK1. Lett Appl Microbiol 42(5):495–500

    Article  PubMed  CAS  Google Scholar 

  • Kost AN, Modyanova LV (1978) Microbiological transformation of pyridine derivatives (review). Chem Heterocycl Comp 14(10):1049–1062

    Article  Google Scholar 

  • Li YM, Gu GW, Zhao JF, Yu HQ (2001) Anoxic degradation of nitrogenous heterocyclic compounds by acclimated activated sludge. Process Biochem 37(1):81–86

    Article  CAS  Google Scholar 

  • Mohan SV, Sistla S, Guru RK, Prasad KK, Kumar CS, Ramakrishna SV, Sarma PN (2003) Microbial degradation of pyridine using Pseudomonas sp. and isolation of plasmid responsible for degradation. Waste Manag 23(2):167–171

    Article  PubMed  CAS  Google Scholar 

  • Moir JWB, Crossman LC, Spiro S, Richardson DJ (1996a) The purification of ammonia monooxygenase from Paracoccus denitrificans. FEBS Lett 387(1):71–74

    Article  PubMed  CAS  Google Scholar 

  • Moir JWB, Wehrfritz JM, Spiro S, Richardson DJ (1996b) The biochemical characterization of a novel non-haem-iron hydroxylamine oxidase from Paracoccus denitrificans GB17. Biochem J 319:823–827

    PubMed  CAS  Google Scholar 

  • Padoley KV, Rajvaidya AS, Subbarao TV, Pandey RA (2006) Biodegradation of pyridine in a completely mixed activated sludge process. Bioresour Technol 97(10):1225–1236

    Article  PubMed  CAS  Google Scholar 

  • Pandey RA, Padoley KV, Mukherji SS, Mudliar SN, Vaidya AN, Rajvaidya AS, Subbarao TV (2007) Biotreatment of waste gas containing pyridine in a biofilter. Bioresour Technol 98(12):2258–2267

    Article  PubMed  CAS  Google Scholar 

  • Rhee SK, Lee GM, Lee ST (1996) Influence of a supplementary carbon source on biodegradation of pyridine by freely suspended and immobilized Pimelobacter sp. Appl Microbiol Biotechnol 44(6):816–822

    PubMed  CAS  Google Scholar 

  • Rhee SK, Lee GM, Yoon JH, Park YH, Bae HS, Lee ST (1997) Anaerobic and aerobic degradation of pyridine by a newly isolated denitrifying bacterium. Appl Environ Microbiol 63(7):2578–2585

    PubMed  CAS  Google Scholar 

  • Rich JJ, Heichen RS, Bottomley PJ, Cromack K, Myrold DD (2003) Community composition and functioning of denitrifying bacteria from adjacent meadow and forest soils. Appl Environ Microbiol 69(10):5974–5982

    Article  PubMed  CAS  Google Scholar 

  • Ronen Z, Bollag JM (1995) Biodegradation of pyridine and pyridine derivatives by soil and subsurface microorganisms. Int J Environ Anal Chem 59(2–4):133–143

    CAS  Google Scholar 

  • Rösch C, Mergel A, Bothe H (2002) Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Appl Environ Microbiol 68(8):3818–3829

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Saunders NFW, Ferguson SJ, Baker SC (2000) Transcriptional analysis of the nirS gene, encoding cytochrome cd(1) nitrite reductase, of Paracoccus pantotrophus LMD 92.63. Microbiology-UK 146:509–516

    CAS  Google Scholar 

  • Scala DJ, Kerkhof LJ (1998) Nitrous oxide reductase (nosZ) gene-specific PCR primers for detection of denitrifiers and three nosZ genes from marine sediments. FEMS Microbiol Lett 162(1):61–68

    Article  PubMed  CAS  Google Scholar 

  • Shukla OP (1973) Microbial decomposition of pyridine. Indian J Exp Biol 11(5):463–465

    PubMed  CAS  Google Scholar 

  • Sims GK, Sommers LE, Konopka A (1986) Degradation of pyridine by Micrococcus luteus isolated from soil. Appl Environ Microbiol 51(5):963–968

    PubMed  CAS  Google Scholar 

  • Song BK, Palleroni NJ, Haggblom MM (2000) Isolation and characterization of diverse halobenzoate-degrading denitrifying bacteria from soils and sediments. Appl Environ Microbiol 66(8):3446–3453

    Article  PubMed  CAS  Google Scholar 

  • State Environmental Protection Administration of China (1989) Monitoring and analysis method of water and wastewater, 3rd edn. China Environmental Science Press, Beijing (in Chinese)

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Throback IN, Enwall K, Jarvis A, Hallin S (2004) Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol Ecol 49(3):401–417

    Article  CAS  PubMed  Google Scholar 

  • Tian S, Qian C, Yang XS (2006) Biodegradation of biomass gasification wastewater by two species of Pseudomonas using immobilized cell reactor. Appl Biochem Biotechnol 128(2):141–147

    Article  PubMed  CAS  Google Scholar 

  • Uma B, Sandhya S (1997) Pyridine degradation and heterocyclic nitrification by Bacillus coagulans. Can J Microbiol 43(6):595–598

    Article  PubMed  CAS  Google Scholar 

  • USEPA (2003) EPA test methods. http://www.epa.gov/

  • Wallenstein MD, Myrold DD, Firestone M, Voytek M (2006) Environmental controls on denitrifying communities and denitrification rates: insights from molecular methods. Ecol Appl 16(6):2143–2152

    Article  PubMed  Google Scholar 

  • Wang JL, Quan XC, Han LP, Qian Y, Hegemann W (2002) Microbial degradation of quinoline by immobilized cells of Burkholderia pickettii. Water Res 36(9):2288–2296

    Article  CAS  Google Scholar 

  • Watson GK, Cain RB (1975) Microbial metabolism of the pyridine ring. Metabolic pathways of pyridine biodegradation by soil bacteria. Biochem J 146(1):157–172

    PubMed  CAS  Google Scholar 

  • Wehrfritz JM, Reilly A, Spiro S, Richardson DJ (1993) Purification of hydroxylamine oxidase from Thiosphaera pantotropha. Identification of electron acceptors that couple heterotrophic nitrification to aerobic denitrification. FEBS Lett 335(2):246–250

    Article  PubMed  CAS  Google Scholar 

  • Zefirov NS, Agapova SR, Terentiev PB, Bulakhova IM, Vasyukova NI, Modyanova LV (1994) Degradation of pyridine by Arthrobacter crystallopoeites and Rhodococcus opacus strains. FEMS Microbiol Lett 118(1–2):71–74

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was accomplished under an “863” Exploration Project (No. 2006AA06Z336) granted by the Chinese Ministry of Science and Technology and a Pre-exploration Project (No. 8073028) granted by the Natural Science Foundation of Beijing. The authors would like to express their appreciation to Prof. Yi Li, Mr. Mian Xia, Mr. Lin Qiao, Ms. Linying Wang, Ms. Xiaojin Cao, and Mr. Shengde Sha in the Beijing Weiming Kaituo Agro-biotechnology Ltd., for helping in the molecular biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghui Wen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, Y., Sun, Q., Zhao, C. et al. Microbial degradation and metabolic pathway of pyridine by a Paracoccus sp. strain BW001. Biodegradation 19, 915–926 (2008). https://doi.org/10.1007/s10532-008-9193-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-008-9193-3

Keywords

Navigation