Skip to main content

Advertisement

Log in

Adaptive invasive species distribution models: a framework for modeling incipient invasions

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

The utilization of species distribution model(s) (SDM) for approximating, explaining, and predicting changes in species’ geographic locations is increasingly promoted for proactive ecological management. Although frameworks for modeling non-invasive species distributions are relatively well developed, their counterparts for invasive species—which may not be at equilibrium within recipient environments and often exhibit rapid transformations—are lacking. Additionally, adaptive ecological management strategies address the causes and effects of biological invasions and other complex issues in social-ecological systems. We conducted a review of biological invasions, species distribution models, and adaptive practices in ecological management, and developed a framework for adaptive, niche-based, invasive species distribution model (iSDM) development and utilization. This iterative, 10-step framework promotes consistency and transparency in iSDM development, allows for changes in invasive drivers and filters, integrates mechanistic and correlative modeling techniques, balances the avoidance of type 1 and type 2 errors in predictions, encourages the linking of monitoring and management actions, and facilitates incremental improvements in models and management across space, time, and institutional boundaries. These improvements are useful for advancing coordinated invasive species modeling, management and monitoring from local scales to the regional, continental and global scales at which biological invasions occur and harm native ecosystems and economies, as well as for anticipating and responding to biological invasions under continuing global change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdi H, Williams LJ (2010) Principal component analysis. Wiley Interdiscip Rev Comput Stat 2:433–459

    Article  Google Scholar 

  • Allen CR, Fontaine JJ, Pope KL, Garmestani AS (2011) Adaptive management for a turbulent future. J Environ Manag 92:1339–1345

    Article  Google Scholar 

  • Allen CR, Nemec KT, Wardwell DA, Hoffman JD, Brust M, Decker KL, Fogell D, Hogue J, Lotz A, Miller T, Pummill M, Ramirez-Yanez LE, Uden DR (2013) Predictors of regional establishment success and spread of introduced non-indigenous vertebrates. Glob Ecol Biogeogr 22:889–899

    Article  Google Scholar 

  • Allen CR, Uden DR, Johnson AR, Angeler DG (2015) Spatial modeling approaches for understanding and predicting the impacts of invasive alien species on native species and ecosystems. In: Venette RC (ed) Pest risk modelling and mapping for invasive alien species. CAB International, Wallingford

    Google Scholar 

  • Angeler DG, Allen CR, Johnson RK (2012) Insight on invasions and resilience derived from spatiotemporal discontinuities of biomass at local and regional scales. Ecol Soc 17:32

    Google Scholar 

  • Angert A (2009) The niche, limits to species’ distributions, and spatiotemporal variation in demography across the elevation ranges of two monkeyflowers. Proc Natl Acad Sci 106:19693–19698

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Araujo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47

    Article  PubMed  Google Scholar 

  • Araujo MB, Peterson AT (2012) Uses and misuses of bioclimatic envelope modeling. Ecology 93:1527–1539

    Article  PubMed  Google Scholar 

  • Austin MP (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol Model 157:101–118

    Article  Google Scholar 

  • Austin MP (2007) Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecol Model 200:1–19

    Article  Google Scholar 

  • Barry S, Elith J (2006) Error and uncertainty in habitat models. J Appl Ecol 43:413–423

    Article  Google Scholar 

  • Beale CM, Lennon JJ (2012) Incorporating uncertainty in predictive species distribution modelling. Philos Trans R Soc B 367:247–258

    Article  Google Scholar 

  • Beaumont LJ, Gallagher RV, Thuiller W, Downey PO, Leishman MR, Hughes L (2009) Different climatic envelopes among invasive populations may lead to underestimations of current and future biological invasions. Divers Distrib 15:409–420

    Article  Google Scholar 

  • Bertelsmeier C, Luque GM, Courchamp F (2013) Increase in quality and quantity of suitable areas for invasive species as climate changes. Conserv Biol 27:1458–1467

    Article  PubMed  Google Scholar 

  • Boone RB, Krohn WB (2002) Modeling tools and accuracy assessment. In: Scott JM, Heglund PJ, Morrison ML, Haufler JB, Raphael MG, Wall WA, Samson FB (eds) Predicting species occurrences: issues of accuracy and scale. Island Press, Washington, D.C., pp 265–270

    Google Scholar 

  • Booth TH, Nix HA, Busby JR, Hutchinson MF (2014) BIOCLIM: the first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Divers Distrib 20:1–9

    Article  Google Scholar 

  • Bourg NA, McShea WJ, Gill DE (2005) Putting a CART before the search: successful habitat prediction for a rare forest herb. Ecology 86:2793–2804

    Article  Google Scholar 

  • Bradley BA (2013) Distribution models of invasive plants over-estimate potential impact. Biol Invasions 15:1417–1429

    Article  Google Scholar 

  • Bradley BA, Wilcove DS (2009) When invasive plants disappear: transformative restoration possibilities in the western United States resulting from climate change. Restor Ecol 17:715–721

    Article  Google Scholar 

  • Bradley BA, Oppenheimer M, Wilcove DS (2009) Climate change and plant invasions: restoration opportunities ahead? Glob Change Biol 15:1511–1521

    Article  Google Scholar 

  • Bradley BA, Early R, Sorte CJB (2015) Space to invade? Comparative range infilling and potential range of invasive and native plants. Glob Ecol Biogeogr 24:348–359

    Article  Google Scholar 

  • Breiman L (2001a) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Breiman L (2001b) Statistical modeling: the two cultures. Stat Sci 16:199–231

    Article  Google Scholar 

  • Broennimann O, Guisan A (2008) Predicting current and future biological invasions: both native and invaded ranges matter. Biol Lett 4:585–589

    Article  PubMed Central  PubMed  Google Scholar 

  • Brook BW, Ackakaya R, Keith DA, Mace GM, Pearson RG, Araujo MB (2009) Integrating bioclimate with population models to improve forecasts of species extinctions under climate change. Biol Lett 5:723–725

    Article  PubMed Central  PubMed  Google Scholar 

  • Brown RG, James AF, Pitchford JW, Plank MJ (2013) Habitat fragmentation: simple models for local persistence and the spread of invasive species. J Theor Biol 310:231–238

    Article  Google Scholar 

  • Brummer TJ, Maxwell BD, Higgs MD, Rew LJ (2013) Implementing and interpreting local-scale invasive species distribution models. Divers Distrib 19:919–932

    Article  Google Scholar 

  • Buisson L, Thuiller W, Casajus N, Lek S, Grenouillet G (2010) Uncertainty in ensemble forecasting of species distribution. Glob Change Biol 16:1145–1157

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2014) P values are only an index to evidence: 20th- vs. 21st-century statistical science. Ecology 95:627–630

    Article  CAS  PubMed  Google Scholar 

  • Cablk M, White D, Kiester R (2002) Assessment of spatial autocorrelation in empirical models in ecology. In: Scott JM, Heglund PJ, Morrison ML, Haufler JB, Raphael MG, Wall WA, Samson FB (eds) Predicting species occurrences: issues of accuracy and scale. Island Press, Washington, pp 429–440

    Google Scholar 

  • Chambert T, Miller DAW, Nichols JD (2015) Modeling false positive detections in species occurrence data under different study designs. Ecology 96:332–339

    Article  PubMed  Google Scholar 

  • Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46

    Article  Google Scholar 

  • Conroy MJ, Moore CT (2002) Wildlife habitat modeling in an adaptive framework: the role of alternative models. In: Scott JM, Heglund PJ, Morrison ML, Haufler JB, Raphael MG, Wall WA, Samson FB (eds) Predicting species occurrences: issues of accuracy and scale. Island Press, Washington, pp 205–218

    Google Scholar 

  • Conroy MJ, Runge MC, Nichols JD, Stodola KW, Cooper RJ (2011) Conservation in the face of climate change: the role of alternative models, monitoring, and adaptation in confronting and reducing uncertainty. Biol Conserv 144:1204–1213

    Article  Google Scholar 

  • Cote IM, Reynolds JD (2002) Predictive ecology to the rescue? Science 298:1181–1182

    Article  CAS  PubMed  Google Scholar 

  • Crooks JA (2005) Lag times and exotic species: the ecology and management of biological invasions in slow-motion. Ecoscience 12:316–326

    Article  Google Scholar 

  • Crowl TA, Crist TO, Parmenter RR, Belovsky G, Lugo AE (2008) The spread of invasive species and infectious disease as drivers of ecosystem change. Front Ecol Environ 6:238–246

    Article  Google Scholar 

  • Cumming GS, Olsson P, Chapin FS III, Holling CS (2013) Resilience, experimentation, and scale mismatches in social-ecological landscapes. Landsc Ecol 28:1139–1150

    Article  Google Scholar 

  • D’Evelyn ST, Tarui N, Burnett K, Roumasset JA (2008) Learning-by-catching: uncertain invasive-species populations and the value of information. J Environ Manag 89:284–292

    Article  Google Scholar 

  • De Marco P Jr, Diniz-Filho JAF, Bini LM (2008) Spatial analysis improves species distribution modelling during range expansion. Biol Lett 4:577–580

    Article  PubMed Central  PubMed  Google Scholar 

  • de Siqueira MF, Durigan G, de Marco P Jr, Peterson AT (2009) Something from nothing: using landscape similarity and ecological niche modeling to find rare plant species. J Nat Conserv 17:25–32

    Article  Google Scholar 

  • Diniz-Filho JAF, Bini LM, Hawkins BA (2003) Spatial autocorrelation and red herrings in geographical ecology. Glob Ecol Biogeogr 12:53–64

    Article  Google Scholar 

  • Dormann CF, Purschke O, Garcia Marquez JR, Lautenbach S, Schroder B (2008) Components of uncertainty in species distribution analysis: the case of the great grey shrike. Ecology 89:3371–3386

    Article  PubMed  Google Scholar 

  • Dwyer G, Elkinton JS, Hajek AE (1998) Spatial scale and the spread of a fungal pathogen of gypsy moth. Am Nat 152:485–494

    Article  CAS  PubMed  Google Scholar 

  • Eiswerth ME, van Kooten CG (2002) Uncertainty, economics, and the spread of an invasive plant species. Am J Agric Econ 84:1317–1322

    Article  Google Scholar 

  • Elith J, Graham CH (2009) Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography 32:66–77

    Article  Google Scholar 

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697

    Article  Google Scholar 

  • Elith J, Burgman MA, Regan HM (2002) Mapping epistemic uncertainties and vague concepts in predictions of species distribution. Ecol Model 157:313–329

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Lucia JL, Lohmann G, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberon J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813

    Article  CAS  PubMed  Google Scholar 

  • Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1:330–342

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Dudik M, En Chee Y, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57

    Article  Google Scholar 

  • Elton CS (1958) The ecology of invasions by animals and plants. The University of Chicago Press, Chicago

    Book  Google Scholar 

  • Englund G, Cooper SD (2003) Scale effects and extrapolation in ecological experiments. Adv Ecol Res 33:161–213

    Article  Google Scholar 

  • Fernandez M, Hamilton H, Alvarez O, Guo Q (2012) Does adding multi-scale climatic variability improve our capacity to explain niche transferability in invasive species? Ecol Model 246:60–67

    Article  Google Scholar 

  • Ferrier S, Watson G, Pearce J, Drielsma M (2002) Extended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. I. Species-level modelling. Biodivers Conserv 11:2275–2307

    Article  Google Scholar 

  • Ficetola GR, Thuiller W, Miaud C (2007) Prediction and validation of the potential global distribution of a problematic alien invasive species—the American bullfrog. Divers Distrib 13:476–485

    Article  Google Scholar 

  • Fitzpatrick MC, Hargrove WW (2009) The projection of species distribution models and the problem of non-analog climate. Biodivers Conserv 18:2255–2261

    Article  Google Scholar 

  • Fitzpatrick MC, Weltzin JF, Sanders NJ, Dunn RR (2007) The biogeography of prediction error: Why does the introduced range of the fire ant over-predict its native range? Glob Ecol Biogeogr 16:24–33

    Article  Google Scholar 

  • Flanagan NE, Richardson CJ, Ho M (2015) Connecting differential responses of native and invasive riparian plants to climate change and environmental alteration. Ecol Appl 25:753–767

    Article  PubMed  Google Scholar 

  • Franklin J (2010) Moving beyond static species distribution models in support of conservation biogeography. Divers Distrib 16:321–330

    Article  Google Scholar 

  • Freeman EA, Moisen GG (2008) A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecol Model 217:48–58

    Article  Google Scholar 

  • Friedman J, Hastie T, Tibshirani R (2000) Additive logistic regression: a statistical view of boosting. Ann Stat 28:337–407

    Article  Google Scholar 

  • Gallien L et al (2010) Predicting potential distributions of invasive species: Where to go from here? Divers Distrib 16:331–342

    Article  Google Scholar 

  • Gallien L, Douzet R, Pratte S, Zimmerman NE, Thuiller W (2012) Invasive species distribution models—how violating the equilibrium assumption can create new insights. Glob Ecol Biogeogr 21:1126–1136

    Article  Google Scholar 

  • GBIF (2015) Global biodiversity information facility: free and open access to biodiversity data. www.gbif.org

  • GISIN (2015) Global invasive species information network, providing free and open access to invasive species data. http://www.gisin.org

  • Gogol-Prokurat M (2011) Predicting habitat suitability for rare plants at local spatial scales using a species distribution model. Ecol Appl 21:33–47

    Article  PubMed  Google Scholar 

  • Graham CH, Ferrier S, Huettman F, Moritz C, Peterson AT (2004) New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol Evol 19:497–503

    Article  PubMed  Google Scholar 

  • Grant WE, Pedersen EK, Marin SL (1997) Ecology and natural resources management: systems analysis and simulations. Wiley, New York

    Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Guisan A, Broennimann O, Engler R, Vust M, Yuccoz NC, Lehmann A, Zimmermann NE (2006) Using niche-based models to improve the sampling of rare species. Conserv Biol 20:501–511

    Article  PubMed  Google Scholar 

  • Guisan A, Zimmermann NE, Elith J, Graham CH, Phillips S, Peterson AT (2007) What matters for predicting the occurrences of trees: Techniques, data, or species’ characteristics? Ecol Monogr 77:615–630

    Article  Google Scholar 

  • Hartley S, Harris R, Lester PJ (2006) Quantifying uncertainty in the potential distribution of an invasive species: climate and the Argentine ant. Ecol Lett 9:1068–1079

    Article  PubMed  Google Scholar 

  • Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785

    Article  Google Scholar 

  • Higgins SI, Richardson DM, Cowling RM (1996) Modeling invasive plant spread: the role of plant–environment interactions and model structure. Ecology 77:2043–2054

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hill MP, Hoffman AA, Macfadyen S, Umina PA, Elith J (2012) Understanding niche shifts: using current and historical data to model the invasive redlegged earth mite Halotydeus destructor. Divers Distrib 18:191–203

    Article  Google Scholar 

  • Hobbs RJ, Humphries SE (1995) An integrated approach to the ecology and management of plant invasions. Conserv Biol 9:761–770

    Article  Google Scholar 

  • Hobbs RM, Higgs ES, Hall CM (2013) Novel ecosystems: intervening in the new ecological world order. Wiley-Blackwell, Boston

    Book  Google Scholar 

  • Holling CS (1978) Adaptive environmental assessment and management. Wiley-Interscience, Chichester

    Google Scholar 

  • Holling CS, Allen CR (2002) Adaptive inference for distinguishing credible from incredible patterns in nature. Ecosystems 5:319–328

    Article  Google Scholar 

  • Hooten MB, Wikle CK (2008) A hierarchical Bayesian non-linear spatio-temporal model for the spread of invasive species with application to the Eurasian collared-dove. Environ Ecol Stat 15:59–70

    Article  Google Scholar 

  • Horan RD, Perrings C, Lupi F, Bulte EH (2002) Biological pollution prevention strategies under ignorance: the case of invasive species. Am J Agric Econ 84:1303–1310

    Article  Google Scholar 

  • Hortal J, Lobo JM, Jimenez-Valverde A (2007) Limitations of biodiversity databases: case study on seed–plant diversity in Tenerife, Canary Islands. Conserv Biol 21:853–863

    Article  PubMed  Google Scholar 

  • Huston MA (2002) Critical issues in improving predictions. In: Scott JM, Heglund PJ, Morrison ML, Haufler JB, Raphael MG, Wall WA, Samson FB (eds) Predicting species occurrences: issues of accuracy and scale. Island Press, Washington, pp 7–24

    Google Scholar 

  • Hutchinson GE (1978) An introduction to population ecology. Yale University Press, New Haven

    Google Scholar 

  • Iacarella JC, Dick JTA, Alexander ME, Ricciardi A (2015) Ecological impacts of invasive alien species along temperature gradients: testing the role of environmental matching. Ecol Appl 25:706–716

    Article  PubMed  Google Scholar 

  • Ibanez I, Silander JA Jr, Wilson AM, LaFleur N, Tanaka N, Tsuyama I (2009) Multivariate forecasts of potential distributions of invasive plant species. Ecol Appl 19:359–375

    Article  PubMed  Google Scholar 

  • James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning. Springer, New York

    Book  Google Scholar 

  • Jarvis A, Williams K, Williams D, Guarino L, Caballero PJ, Mottram G (2005) Use of GIS for optimizing a collecting mission for a rare wild pepper (Capsicum flexuosum Sendtn.) in Paraguay. Genet Resour Crop Evol 52:671–682

    Article  Google Scholar 

  • Jeschke JM, Strayer DL (2008) Usefulness of bioclimatic models for studying climate change and invasive species. Ann NY Acad Sci 1134:1–24

    Article  PubMed  Google Scholar 

  • Jimenez-Valverde A, Lobo JM (2007) Threshold criteria for conversion of probability of species presence to either–or presence–absence. Acta Oecol 31:361–369

    Article  Google Scholar 

  • Jimenez-Valverde A, Lobo JM, Hortal J (2008) Not as good as they seem: the importance of concepts in species distribution modelling. Divers Distrib 14:885–890

    Article  Google Scholar 

  • Jimenez-Valverde A, Nakazawa Y, Lira-Noriega A, Peterson AT (2009) Environmental correlation structure and ecological niche model projections. Biodiv Inform 6:28–35

    Article  Google Scholar 

  • Jimenez-Valverde A, Lira-Noriega A, Peterson AT, Soberon J (2010) Marshalling existing biodiversity data to evaluate biodiversity status and trends in planning exercises. Ecol Restor 25:947–957

    Article  Google Scholar 

  • Jimenez-Valverde A, Peterson AT, Soberon J, Overton JM, Aragon P, Lobo JM (2011) Use of niche models in invasive species risk assessments. Biol Invasions 13:2785–2797

    Article  Google Scholar 

  • Johnson CM, Krohn WB (2002) Dynamic patterns of association between environmental factors and island use by breeding seabirds. In: Scott JM, Heglund PJ, Morrison ML, Haufler JB, Raphael MG, Wall WA, Samson FB (eds) Predicting species occurrences: issues of accuracy and scale. Island Press, Washington, pp 171–182

    Google Scholar 

  • Kearney MR (2006) Habitat, environment and niche: What are we modelling? Oikos 115:186–191

    Article  Google Scholar 

  • Kearney MR, Porter WP (2004) Mapping the fundamental niche: physiology, climate and the disturbance of a nocturnal lizard. Ecology 85:3119–3131

    Article  Google Scholar 

  • Kearney MR, Porter WP (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol Lett 12:1–17

    Article  Google Scholar 

  • Keitt TH, Bjornstad ON, Dixon PM, Citron-Pousty S (2002) Accounting for spatial pattern when modeling organism-environment interactions. Ecography 25:616–625

    Article  Google Scholar 

  • Langford WT, Gergel SE, Dietterich TG, Cohen W (2006) Map misclassification can cause large errors in landscape pattern indices: examples from habitat fragmentation. Ecosystems 9:474–488

    Article  Google Scholar 

  • Latimer AM, Wu S, Gelfand AE, Silander JA Jr (2006) Building statistical models to analyze species distributions. Ecol Appl 16:33–50

    Article  PubMed  Google Scholar 

  • Legendre P (1993) Spatial autocorrelation: trouble of new paradigm? Ecology 74:1659–1673

    Article  Google Scholar 

  • Leung B, Lodge DM, Finnoff D, Shogren JF, Lewis MA, Lamberti G (2002) An ounce of prevention or a pound of cure: bioeconomic risk analysis of invasive species. Proc R Soc Lond B 269:2407–2413

    Article  Google Scholar 

  • Leung B, Drake JM, Lodge DM (2004) Predicting invasions: propagule pressure and the gravity of Allee effects. Ecology 85:1651–1660

    Article  Google Scholar 

  • Leung B, Finnoff D, Shogren JF, Lodge D (2005) Managing invasive species: rules of thumb for rapid assessment. Ecol Econ 55:24–36

    Article  Google Scholar 

  • Leung B, Bossenbroek JM, Lodge DM (2006) Boats, pathways, and aquatic biological invasions: estimating dispersal potential with gravity models. Biol Invasions 8:241–254

    Article  Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73:1943–1967

    Article  Google Scholar 

  • Link WA, Sauer JR (2002) A hierarchical analysis of population change with application to cerulean warblers. Ecology 83:2832–2840

    Article  Google Scholar 

  • Lobo JM, Baselga A, Hortal J, Jimenez-Valverde A, Gomez JF (2007) How does the knowledge about the spatial distribution of Iberian dung beetle species accumulate over time? Divers Distrib 13:772–780

    Article  Google Scholar 

  • Lobo JM, Jimenez-Valverde A, Hortal J (2010) The uncertain nature of absences and their importance in species distribution modelling. Ecography 33:103–114

    Article  Google Scholar 

  • Lockwood JL, Hoopes MF, Marchetti MP (2007) Invasion ecology. Blackwell Publishing, Maldan

    Google Scholar 

  • Lockwood JL, Cassey P, Blackburn T (2009) The more you introduce the more you get: the role of colonization pressure and propagule pressure in invasion ecology. Divers Distrib 15:904–910

    Article  Google Scholar 

  • MacGuire LA (2004) What can decision analysis do for invasive species management? Risk Anal 24:859–868

    Article  Google Scholar 

  • MacNeil C, Dick JTA, Alexander ME, Dodd JA, Ricciardi A (2013) Predators vs. alien: differential biotic resistance to an invasive species by two resident predators. NeoBiota 19:1–19

    Article  Google Scholar 

  • Maggini R, Lehmann A, Zimmermann NE, Guisan A (2006) Improving generalized regression analysis for the spatial prediction of forest communities. J Biogeogr 33:1729–1749

    Article  Google Scholar 

  • Manel S, Williams HC, Ormerod SJ (2001) Evaluating presence-absence models in ecology: the need to account for prevalence. J Appl Ecol 38:921–931

    Article  Google Scholar 

  • Marcer A, Pino J, Pons X, Brotons L (2012) Modelling invasive alien species distributions from digital biodiversity atlases. Model upscaling as a means of reconciling data at different scales. Divers Distrib 18:1177–1189

    Article  Google Scholar 

  • Marvier M, Kareiva P, Neubert MG (2004) Habitat destruction, fragmentation, and disturbance promote invasion by habitat generalists in a multispecies metapopulation. Risk Anal 24:869–878

    Article  PubMed  Google Scholar 

  • McCune B (2006) Non-parametric habitat models with automatic interactions. J Veg Sci 17:819–830

    Article  Google Scholar 

  • McPherson JM, Jetz W (2007) Effects of species’ ecology on the accuracy of distribution models. Ecography 30:135–151

    Google Scholar 

  • Mehta SV, Haight RG, Homans FR, Polasky S, Venette RC (2007) Optimal detection and control strategies for invasive species management. Ecol Econ 61:237–245

    Article  Google Scholar 

  • Miller JR, Turner MG, Smithwick EAH, Dent CL, Stanley EH (2004) Spatial extrapolation: the science of predicting ecological patterns and processes. Bioscience 54:310–320

    Article  Google Scholar 

  • Miller J, Franklin J, Aspinall R (2007) Incorporating spatial dependence in predictive vegetation models. Ecol Model 202:225–242

    Article  Google Scholar 

  • Miller TK, Allen CR, Landis WG, Merchant JW (2011) Risk assessment: simultaneously prioritizing the control of invasive plant species and the conservation of rare plant species. Biol Conserv 143:2070–2079

    Article  Google Scholar 

  • Mistro DC, Rodrigues LAD, Petrovskii S (2012) Spatiotemporal complexity of biological invasion in a space- and time-discrete predator–prey system with a strong Allee effect. Ecol Complex 9:16–32

    Article  Google Scholar 

  • Morales CL, Arbetman MP, Cameron SA, Aizen MA (2013) Rapid ecological replacement of a native bumble bee by invasive species. Front Ecol Environ 11:529–534

    Article  Google Scholar 

  • Morrison LW, Porter SD, Daniels E, Korzukhin MD (2004) Potential global range expasion of the invasive fire ant, Solenopsis invicta. Biol Invasions 6:183–191

  • Muirhead JR, Leung B, van Overdijk C, Kelly DW, Nandakumar K, Marchant KR, MacIsaac HJ (2006) Modeling local and long-distance dispersal of invasive emerald ash borer Agrilus planipennis (Coleoptera) in North America. Divers Distrib 12:71–79

    Article  Google Scholar 

  • Murtaugh PA (2014) In defense of P values. Ecology 95:611–617

    Article  PubMed  Google Scholar 

  • Neubert MG, Parker IM (2004) Projecting rates of spread for invasive species. Risk Anal 24:817–831

    Article  PubMed  Google Scholar 

  • O’Connor RJ (2002) The conceptual basis of species distribution modeling: Time for a paradigm shift? In: Scott JM, Heglund PJ, Morrison ML, Haufler JB, Raphael MG, Wall WA, Samson FB (eds) Predicting species occurrences: issues of accuracy and scale. Island Press, Washington, pp 25–34

    Google Scholar 

  • O’Neill RV, Hunsaker CT, Timmins SP, Jackson BL, Jones KB, Riitters KH, Wickham JD (1996) Scale problems in reporting landscape pattern at the regional scale. Landsc Ecol 11:169–180

    Article  Google Scholar 

  • Olden JD, Lawler JJ, Poff NL (2008) Machine learning methods without tears: a primer for ecologists. Q Rev Biol 83:171–193

    Article  PubMed  Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: Are bioclimatic envelope models useful? Glob Ecol Biogeogr 12:361–371

    Article  Google Scholar 

  • Pearson RG, Thuiller W, Araujo MB, Martinez-Meyer E, Brotons L, McClean C, Miles L, Segurado P, Dawson TP, Lees DC (2006) Model-based uncertainty in species range prediction. J Biogeogr 33:1704–1711

    Article  Google Scholar 

  • Peterson AT (2003) Predicting the geography of species’ invasion via ecological niche modeling. Q Rev Biol 78:419–433

    Article  PubMed  Google Scholar 

  • Peterson AT (2006) Uses and requirements of ecological niche models and related distributional models. Biodiv Inform 3:59–72

    Article  Google Scholar 

  • Peterson AT, Nakazawa Y (2008) Environmental data sets matter in ecological niche modelling: an example with Solenopsis invicta and Solenopsis richteri. Glob Ecol Biogeogr 17:135–144

    Google Scholar 

  • Peterson AT, Papes M, Soberon J (2008) Rethinking receiver operator analysis applications in ecological niche modelling. Ecol Model 213:63–72

    Article  Google Scholar 

  • Petitpierre B, Kueffer C, Broennimann O, Randin C, Daehler C, Guisan A (2012) Climatic niche shifts are rare among terrestrial plant invaders. Science 335:1344–1348

    Article  CAS  PubMed  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Phillips SJ, Dudik M, Elith J, Graham CH, Lehmann A, Leathwick J, Ferrier S (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19:181–197

    Article  PubMed  Google Scholar 

  • Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288

    Article  Google Scholar 

  • Pulliam HR (2000) On the relationship between niche and distribution. Ecol Lett 3:349–361

    Article  Google Scholar 

  • Raxworthy CJ, Martinez-Meyer E, Horning N, Nussbaum RA, Schneider GE, Ortega-Huerta MA, Peterson AT (2003) Predicting distributions of known and unknown reptile species in Madagascar. Nature 426:837–841

    Article  CAS  PubMed  Google Scholar 

  • Ricciardi A, Steiner WWM, Mack RN, Simberloff D (2000) Toward a global information system for invasive species. Bioscience 50:239–244

    Article  Google Scholar 

  • Richardson DM (ed) (2011) Fifty years of invasion ecology: the legacy of Charles Elton. Wiley-Blackwell, Chichester

    Google Scholar 

  • Rocchini D, Hortal J, Lengyel S, Lobo JM, Jimenez-Valverde A, Ricotta C, Bacaro G, Chiarucci A (2011) Accounting for uncertainty when mapping species distributions: the need for maps of ignorance. Prog Phys Geogr 35:211–226

    Article  Google Scholar 

  • Rodder D, Schmidtlein S, Veith M, Lotters S (2009) Alien invasive slider turtle in unpredicted habitat: a matter of niche shift or of predictors studied? PLoS One 4:1–9

    Article  CAS  Google Scholar 

  • Roura-Pascual N, Brotons L, Peterson AT, Thuiller W (2009) Consensual predictions of potential distributional areas for invasive species: a case study of Argentine ants in the Iberian Peninsula. Biol Invasions 11:1017–1031

    Article  Google Scholar 

  • Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O’Neil P, Parker IM, Thompson JM, Weller SG (2001) The population biology of invasive species. Ann Rev Ecol Syst 32:305–332

    Article  Google Scholar 

  • Sarre SD, MacDonald AJ, Barclay C, Saunders GR, Ramsey DSL (2012) Foxes are now widespread in Tasmania: DNA detection defines the distribution of this rare but invasive carnivore. J Appl Ecol 50:459–468

  • Schroder B (2008) Challenges of species distribution modeling belowground. J Plant Nutr Soil Sci 171:325–337

    Article  CAS  Google Scholar 

  • Schroder B, Seppelt R (2006) Analysis of pattern–process interactions based on landscape models—overview, general concepts, and methodological issues. Ecol Model 199:505–516

    Article  Google Scholar 

  • Shackelford N, Renton M, Perring MP, Hobbs RJ (2013) Modeling disturbance-based native invasive species control and its implications for management. Ecol Appl 23:1331–1344

    Article  PubMed  Google Scholar 

  • Simberloff D (2013) Invasive species: What everyone needs to know. Oxford University Press, Oxford

    Google Scholar 

  • Simpson A (2004) The global invasive species information network: What’s in it for you? Bioscience 54:613–614

    Article  Google Scholar 

  • Smolik MG, Dullinger S, Essl F, Kleinbauer I, Leitner M, Peterseil J, Stadler L-M, Vogl G (2010) Integrating species distribution models and interacting particle systems to predict the spread of an invasive alien plant. J Biogeogr 37:411–422

    Article  Google Scholar 

  • Soberon J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1123

    Article  PubMed  Google Scholar 

  • Soberon J, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiv Inform 2:1–10

    Article  Google Scholar 

  • Stauffer HB, Ralph CJ, Miller SL (2002) Incorporating detection uncertainty into presence–absence surveys for marbled murrelet. In: Scott JM, Heglund PJ, Morrison ML, Haufler JB, Raphael MG, Wall WA, Samson FB (eds) Predicting species occurrences: issues of accuracy and scale. Island Press, Washington, pp 357–366

    Google Scholar 

  • Stevenson MD, Kim Rossmo D, Knell RJ, Le Comber SC (2012) Geographic profiling as a novel spatial tool for targeting the control of invasive species. Ecography 35:704–715

    Article  Google Scholar 

  • Stewart-Koster B, Olden JD, Johnson PTJ (2015) Integrating landscape connectivity and habitat suitability to guide offensive and defensive invasive species management. J Appl Ecol 52:366–378

    Article  Google Scholar 

  • Stockwell D, Peters D (1999) The GARP modelling system: problems and solutions to automated spatial prediction. Int J Geogr Inform Sci 13:143–158

    Article  Google Scholar 

  • Strayer DL, Cid N, Malcom HM (2011) Long-term changes in a population of an invasive bivalve and its effects. Oecologia 165:1063–1072

    Article  PubMed  Google Scholar 

  • Sutherst RW, Bourne AS (2009) Modelling non-equilibrium distributions of invasive species: a tale of two modelling paradigms. Biol Invasions 11:1231–1237

    Article  Google Scholar 

  • Swanson AK, Dobrowski SZ, Finley AO, Thorne JH, Schwartz MK (2013) Spatial regression methods capture prediction uncertainty in species distribution model projections through time. Glob Ecol Biogeogr 22:242–251

    Article  Google Scholar 

  • Theoharides KA, Dukes JS (2007) Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytol 176:256–273

    Article  PubMed  Google Scholar 

  • Thomas K, Keeler-Wolf T, Franklin J (2002) A comparison of fine- and coarse-resolution environmental variables toward predicting vegetation distribution in the Mojave desert. In: Scott JM, Heglund PJ, Morrison ML, Haufler JB, Raphael MG, Wall WA, Samson FB (eds) Predicting species occurrences: issues of accuracy and scale. Island Press, Washington, pp 133–140

    Google Scholar 

  • Thompson SK, Seber GAF (1996) Adaptive sampling. Wiley, New York

    Google Scholar 

  • Thuiller W, Brotons L, Araujo MB, Lavorel S (2004) Effects of restricting environmental range of data to project current and future species distributions. Ecography 27:165–172

    Article  Google Scholar 

  • Thuiller W, Albert C, Araujo MB, Berry PM, Cabeza M, Guisan A, Hickler T, Midgely GF, Paterson J, Schurr FM, Sykes MT, Zimmermann ME (2008) Predicting global change impacts on plant species’ distributions: future challenges. Perspect Plant Ecol 9:137–152

    Article  Google Scholar 

  • Trani MK (2002) The influence of spatial scale on landscape pattern description and wildlife habitat assessment. In: Scott JM, Heglund PJ, Morrison ML, Haufler JB, Raphael MG, Wall WA, Samson FB (eds) Predicting species occurrences: issues of accuracy and scale. Island Press, Washington, pp 141–156

    Google Scholar 

  • Tsoar A, Allouche O, Steinitz O, Rotem D, Kadmon R (2007) A comparative evaluation of presence-only methods for modelling species distribution. Divers Distrib 13:397–405

    Article  Google Scholar 

  • Tulloch VJD, Tulloch AIT, Visconti P, Halpern BS, Watson JEM, Evans MC, Auerbach NA, Barnes M, Beger M, Chades I, Giakoumi S, McDonald-Madden E, Murray NJ, Ringma J, Possingham HP (2015) Why do we map threats? Linking threat mapping with actions to make better conservation decisions. Front Ecol Environ 13:91–99

    Article  Google Scholar 

  • Tyre AJ, Michaels S (2011) Confronting socially generated uncertainty in adaptive management. J Environ Manag 92:1365–1370

    Article  Google Scholar 

  • Tyre AJ, Possingham HP, Lindenmayer DB (2001) Inferring process from pattern: Can territory occupancy provide information about life history parameters? Ecol Appl 11:1722–1737

    Article  Google Scholar 

  • Uden DR, Hellman ML, Angeler DG, Allen CR (2014) The role of reserves and anthropogenic habitats for the functional connectivity and resilience of ephemeral wetlands. Ecol Appl 24:1569–1582

    Article  Google Scholar 

  • Vaclavik T, Meentemeyer RK (2009) Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions? Ecol Model 220:3248–3258

    Article  Google Scholar 

  • Vaclavik T, Meentemeyer RK (2012) Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. Divers Distrib 18:73–83

    Article  Google Scholar 

  • Vaclavik T, Kupfer JA, Meentemeyer RK (2012) Accounting for multi-scale spatial autocorrelation improves performance of invasive species distribution modelling (iSDM). J Biogeogr 39:42–55

    Article  Google Scholar 

  • Van Horne B (2002) Approaches to habitat modeling: the tensions between pattern and process and between specificity and generality. In: Scott JM, Heglund PJ, Morrison ML, Haufler JB, Raphael MG, Wall WA, Samson FB (eds) Predicting species occurrences: issues of accuracy and scale. Island Press, Washington, pp 63–72

    Google Scholar 

  • Vander Zanden MJ, Olden JD (2008) A management framework for preventing the secondary spread of aquatic invasive species. Can J Fish Aquat Sci 65:1512–1522

    Article  Google Scholar 

  • Vaughan IP, Ormerod SJ (2003) Improving the quality of distribution models for conservation by addressing shortcomings in the field collection of training data. Conserv Biol 17:1601–1611

    Article  Google Scholar 

  • Venette RC, Moon RD, Hutchinson WD (2002) Strategies and statistics of sampling for rare individuals. Ann Rev Entomol 47:143–174

    Article  CAS  Google Scholar 

  • Vila M, Espinar JL, Hejda M, Hulme PE, Jarosik V, Maron JL, Pergl J, Schaffner U, Sun Y, Pysek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708

    Article  PubMed  Google Scholar 

  • Ward DF (2007) Modelling the potential geographic distribution of invasive ant species in New Zealand. Biol Invasions 9:723–735

    Article  Google Scholar 

  • Webber BL, LeMaitre DC, Kriticos DJ (2012) Comment on “Climatic niche shifts are rare among terrestrial plant invaders”. Science 338:193–194

    Article  CAS  PubMed  Google Scholar 

  • Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3:385–397

    Article  Google Scholar 

  • Williams JW, Jackson ST, Kutzbach JE (2007) Projected distributions of novel and disappearing climates by 2100 AD. Proc Natl Acad Sci 104:5738–5742

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Williamson M (1996) Biological invasions. Chapman & Hall, London

    Google Scholar 

  • Wilson JRU, Richardson DM, Rouget M, Proches S, Amis MA, Henderson L, Thuiller W (2007) Residence time and potential range: crucial considerations in modelling plant invasions. Divers Distrib 13:11–22

    Article  Google Scholar 

  • With KA (2002) The landscape ecology of invasive spread. Conserv Biol 16:1192–1203

    Article  Google Scholar 

  • Wittman MJ, Metzler D, Gabriel W, Jeschke JM (2014) Decomposing propagule pressure: the effects of propagule size and propagule frequency on invasion success. Oikos 123:441–450

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Smith GM (2007) Analysing ecological data. Springer, New York

    Book  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Kody Unstad, two anonymous reviewers, and members of the Craig Allen graduate student lab for constructive comments and criticisms of this concept and manuscript. The Nebraska Cooperative Fish and Wildlife Research Unit is jointly supported by a cooperative agreement between the U.S. Geological Survey, the Nebraska Game and Parks Commission, the University of Nebraska–Lincoln, the U.S. Fish and Wildlife Service and the Wildlife Management Institute. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Financial support was provided by the August T. Larsson Foundation (NJ Faculty, Swedish University of Agricultural Sciences). This research was supported in part by an NSF IGERT Grant, DGE-0903469. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel R. Uden.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uden, D.R., Allen, C.R., Angeler, D.G. et al. Adaptive invasive species distribution models: a framework for modeling incipient invasions. Biol Invasions 17, 2831–2850 (2015). https://doi.org/10.1007/s10530-015-0914-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-015-0914-3

Keywords

Navigation