Skip to main content

Advertisement

Log in

Risk of invasion by frequently traded freshwater turtles

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Risk assessment allows the identification of non-native species most likely to become invasive and cause harm, and helps to set up preventive measures such as trade regulations. Freshwater turtles are among the most traded pets; an increasing number of species are easily available and frequently released by owners in natural wetlands. This study identified a pool of freshwater turtles frequently traded at cheap prices, and performed risk assessment at multiple steps of the invasion process. Establishment risk was assessed through species distribution models (MaxEnt and Boosted Regression Trees) based on global presence records and bioclimatic variables. We also analyzed ecological and life history traits favouring release, establishment and population growth. Besides the already invasive Trachemys scripta, at least 14 species are easily found in the pet market. For most of them, species distribution models identified areas with suitable climate outside the native range. Validation with independent data confirmed the reliability of the modelling approach. Pelodiscus sinensis and Pelomedusa subrufa had the broadest areas of suitable climate outside the native range. For all the species, possibility of coexistence with humans and reproductive traits suggest high risk of invasion, if introduced in areas with suitable climate. The availability of spatially explicit maps of risk allows to identify areas where preventive measures are urgently needed. In Europe, an expansion of trade regulations is needed to avoid that multiple freshwater turtles become invasive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arena PC, Steedman C, Warwick C (2012) Amphibian and reptile pet markets in the EU: an investigation and assessment. http://www.tieranwalt.at/upload/files/ARPM2012_v131.pdf

  • Aresco MJ (2004) Reproductive ecology of Pseudemys floridana and Trachemys scripta (Testudines:Emydidae) in northwestern Florida. J Herpetol 38:249–256

    Article  Google Scholar 

  • Avanzi M, Millefanti M (2003) Il grande libro delle tartarughe. De Vecchi Editore, Milano

    Google Scholar 

  • Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol Evol 3:327–338

    Article  Google Scholar 

  • Boitani L, Maiorano L, Baisero D, Falcucci A, Visconti P, Rondinini C (2011) What spatial data do we need to develop global mammal conservation strategies? Phil Trans R Soc B 366:2623–2632

    Google Scholar 

  • Bomford N, Barry SC, Lawrence E (2010) Predicting establishment success for introduced freshwater fishes: a role for climate matching. Biol Invasions 12:2559–2571

    Article  Google Scholar 

  • Bonin F, Devaux B, Dupré A (2006) Toutes les tortues du monde. Delachaux et Niestlé, Paris

    Google Scholar 

  • Boycott RC, Bourquin O (2008) Pelomedusa subrufa (Lacépède 1788)—helmeted turtle, helmeted terrapin. In: Rhodin AGJ, Pritchard PCH, Van Dijk PP et al (eds) Conservation biology of freshwater turtles and tortoises: a compilation project of the IUCN/SSC tortoise and freshwater turtle specialist group. Chelonian research monographs No 5. Chelonian Research Foundation, http://www.iucn-tftsg.org/cbftt/, pp 007.001–007.006

  • Broennimann O, Treier UA, Müller-Schärer H, Thuiller W, Peterson AT, Guisan A (2007) Evidence of climatic niche shift during biological invasion. Ecol Lett 10:701–709

    Article  CAS  PubMed  Google Scholar 

  • Capinha C, Leung B, Anastácio P (2011) Predicting worldwide invasiveness for four major problematic decapods: an evaluation of using different calibration sets. Ecography 34:448–459

    Article  Google Scholar 

  • Ceballos C, Adams D, Iverson J, Valenzuela N (2013) Phylogenetic patterns of sexual size dimorphism in Turtles and their implications for Rensch’s Rule. Evol Biol 40:194–208

    Article  Google Scholar 

  • Chen TH, Lue KY (1998) Ecology of the Chinese stripe-necked turtle, Ocadia sinensis (Testudines: Emydidae), in the Keelung River, northern Taiwan. Copeia 1998:944–952

  • Colautti RI, Grigorovich IA, MacIsaac HG (2006) Propagule pressure: a null model for biological invasions. Biol Invasions 8:1023–1037

    Article  Google Scholar 

  • de Magalhaes JP, Costa J (2009) A database of vertebrate longevity records and their relation to other life-history traits. J Evol Biol 22:1770–1774

    Article  PubMed  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson KS, Scachetti-Pereira R, Schapire RE, Soberon J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813

    Article  CAS  PubMed  Google Scholar 

  • Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1:330–342

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57

    Article  Google Scholar 

  • Ernst CH, Lovich JE, Barbour RW (1994) Turtles of the United States and Canada. Smithsonian Institution Press, Washington

    Google Scholar 

  • Ernst CH, Altenburg RGM, Barbour RW (1998) Turtles of the world CD-ROM. Springer, Berlin

    Google Scholar 

  • Ficetola GF, Thuiller W, Miaud C (2007) Prediction and validation of the potential global distribution of a problematic alien invasive species—the American bullfrog. Divers Distrib 13:476–485

    Article  Google Scholar 

  • Ficetola GF, Thuiller W, Padoa-Schioppa E (2009) From introduction to the establishment of alien species: bioclimatic differences between presence and reproduction localities in the slider turtle. Divers Distrib 15:108–116

    Article  Google Scholar 

  • Ficetola GF, Rödder D, Padoa-Schioppa E (2012) Trachemys scripta (Slider terrapin). In: Francis R (ed) Handbook of global freshwater invasive species. Earthscan, Taylor & Francis Group, Abingdon, pp 331–339

  • Frazer NB, Gibbons JW, Greene JL (1991) Life-history and demography of the common Mud Turtle Kinosternon subrubrum in South-Carolina, USA. Ecology 72:2218–2231

    Article  Google Scholar 

  • Gallien L, Douzet R, Pratte S, Zimmermann NE, Thuiller W (2012) Invasive species distribution models—how violating the equilibrium assumption can create new insights. Glob Ecol Biogeogr 21:1126–1136

    Article  Google Scholar 

  • Genovesi P, Shine C (2004) European strategy on invasive alien species. Convention on the conservation of European wildlife and habitats (Bern Convention). Council of Europe, Strasbourg

  • Gutman G, Tarpley D, Ignatov A, Olson S (1997) Global monthly AVHRR climatology over land clear-sky top-of-the-atmosphere variables. NOAA/NESDIS National Geophysical Data Center, Boulder, Colorado. http://www.ngdc.noaa.gov/ecosys/cdroms/AVHRR97_d1/aareadme.htm

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) High resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hulme PE (2006) Beyond control: wider implications for the management of biological invasions. J Appl Ecol 43:835–847

    Google Scholar 

  • Hulme PE (2009) Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol 46:10–18

    Article  Google Scholar 

  • Iverson JB (2002) Reproduction in female razorback musk turtles (Sternotherus carinatus: Kinosternidae). Southwest Nat 47:215–224

    Article  Google Scholar 

  • Iverson JB, Moler PE (1997) The female reproductive cycle of the Florida softshell turtle (Apalone ferox). J Herpetol 31:399–409

    Article  Google Scholar 

  • Iverson JB, Kiester AR, Hughes LE, Kimerling AJ (2003) The EMYSystem world turtle database. http://emys.geo.orst.edu/

  • Jackson DR (2008) Pseudemys nelsoni Carr 1938—Florida Red-Bellied Turtle. In: Rhodin AGJ, Pritchard PCH, Van Dijk PP et al (eds) Conservation biology of freshwater turtles and tortoises: a compilation project of the IUCN/SSC tortoise and freshwater turtle specialist group. Chelonian research monographs No 5. Chelonian Research Foundation, http://www.iucn-tftsg.org/cbftt/, pp 006.001–006.007

  • Keller RP, Kocev D, Dzeroski S (2011) Trait-based risk assessment for invasive species: high performance across diverse taxonomic groups, geographic ranges and machine learning/statistical tools. Divers Distrib 17:451–461

    Article  Google Scholar 

  • Keller RP, Lodge DM, Finnoff DC (2007) Risk assessment for invasive species produces net bioeconomic benefits. Proc Natl Acad Sci USA 104:203–207

    Google Scholar 

  • Kikillus KH, Hare KH, Hartley S (2010) Minimizing false-negatives when predicting the potential distribution of an invasive species: a bioclimatic envelope for the red-eared slider at global and regional scales. Anim Conserv 13(suppl. 1):5–15

    Article  Google Scholar 

  • Kikillus KH, Hare KM, Hartley S (2012) Online trading tools as a method of estimating propagule pressure via the pet-release pathway. Biol Invasions 14:2657–2664

    Article  Google Scholar 

  • Kobayashi R, Hasegawa M, Miyashita T (2006) Population parameters of an alien turtle (Chelydra serpentina) in the Inbanuma basin, Chiba Prefecture, Japan. In: Koike F, Clout MN, Kawamichi M, De Poorter M, Iwatsuki K (eds) Assessment and control of biological invasion risks. Shoukadoh Book Sellers & IUCN, Kyoto, pp 168–169

    Google Scholar 

  • Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204

    Google Scholar 

  • Kraus F (2009) Alien reptiles and Amphibians a scientific compendium and analysis. Springer, Dordrecht

    Book  Google Scholar 

  • Leung B, Roura-Pascual N, Bacher S, Heikkilä J, Brotons L, Burgman MA, Dehnen-Schmutz K, Essl F, Hulme PE, Richardson DM, Sol D, Vilà M (2012) TEASIng apart alien species risk assessments: a framework for best practices. Ecol Lett 15:1475–1493

    Article  PubMed  Google Scholar 

  • Lindeman PV (2008) Sternotherus carinatus (Gray 1856)—Razorback musk turtle, Razor-backed musk turtle. In: Rhodin AGJ, Pritchard PCH, Van Dijk PP et al (eds) Conservation biology of freshwater turtles and tortoises: a compilation project of the IUCN/SSC tortoise and freshwater turtle specialist group. Chelonian research monographs No 5. Chelonian Research Foundation, http://www.iucn-tftsg.org/cbftt/, p 012.011/012.016

  • Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr 17:145–151

    Article  Google Scholar 

  • Lockwood JL, Cassey P, Blackburn TM (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228

    Article  PubMed  Google Scholar 

  • Lovich JE, Yasukawa Y, Ota H (2011) Mauremys reevesii (Gray 1831)—Reeves’ Turtle, Chinese Three-Keeled Pond Turtle. In: Rhodin AGJ, Pritchard PCH, Van Dijk PP et al (eds) Conservation biology of freshwater turtles and tortoises: a compilation project of the IUCN/SSC tortoise and freshwater turtle specialist group. Chelonian research monographs No 5. Chelonian Research Foundation, http://www.iucn-tftsg.org/cbftt/, pp 050.051–050.010

  • McGaugh SE, Eckerman CM, Janzen FJ (2008) Molecular phylogeography of Apalone spinifera (Reptilia, Trionychidae). Zool Scr 37:289–304

    Article  Google Scholar 

  • Measey GJ, Rodder D, Green SL, Kobayashi R, Lillo F, Lobos G, Rebelo R, Thirion JM (2012) Ongoing invasions of the African clawed frog, Xenopus laevis: a global review. Biol Invasions 14:2255–2270

    Article  Google Scholar 

  • Mitchell JC (1985) Female reproductive cycle and life history attributes in a Virginia population of Stinkpot Turtles, Sternotherus odoratus. Copeia 1985:941–949

    Article  Google Scholar 

  • New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Clim Res 21:1–25

    Article  Google Scholar 

  • Nogués-Bravo D (2009) Predicting the past distribution of species climatic niche. Glob Ecol Biogeogr 18:521–531

    Article  Google Scholar 

  • Pearman P, D’Amen M, Graham CH, Thuiller W, Zimmermann NE (2010) Within-taxon niche structure: niche conservatism, divergence and predicted effects of climate change. Ecography 33:990–1003

    Article  Google Scholar 

  • Petitpierre B, Kueffer C, Broennimann O, Randin C, Daehler C, Guisan A (2012) Climatic niche shifts are rare among terrestrial plant invaders. Science 335:1344–1348

    Article  CAS  PubMed  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reshetnikov AN, Ficetola GF (2011) Potential range of the invasive fish rotan (Perccottus glenii) in the Holarctic. Biol Invasions 13:2967–2980

    Article  Google Scholar 

  • Richardson DM, Thuiller W (2007) Home away from home—objective mapping of high-risk source areas for plant introductions. Divers Distrib 13:299–312

    Article  Google Scholar 

  • Rödder D, Schmidtlein S, Veith M, Lötters S (2009) Alien invasive slider turtle in unpredicted habitat: a matter of niche shift or of predictors studied? PLoS ONE 4:e7843

    Article  PubMed Central  PubMed  Google Scholar 

  • Roura-Pascual N, Suarez AV, Goomez C, Pons P, Touyama Y, Wild AL, Peterson AT (2004) Geographical potential of Argentine ants (Linepithema humile Mayr) in the face of global climate change. Proc R Soc B 271:2527–2534

    Article  PubMed  Google Scholar 

  • Sanderson EW, Jaiteh M, Levy MA, Redford KH, Wannebo AV, Woolmer G (2002) The human footprint and the last of the wild. Bioscience 52:891–904

    Article  Google Scholar 

  • Scalera R (2007) Virtues and shortcomings of EU legal provisions for managing NIS: Rana catesbeiana and Trachemys scripta elegans as case studies. In: Gherardi F (ed) Biological invaders in inland waters: profiles, distribution, and threats. Springer, Dordrecht, pp 669–678

    Chapter  Google Scholar 

  • Simberloff D, Genovesi P, Pysek P, Campbell K (2011) Recognizing conservation success. Science 332:419

    Google Scholar 

  • Teillac-Deschamps P, Lorrilliere R, Servais V, Delmas V, Cadi A, Prévot-Julliard AC (2009) Management strategies in urban green spaces: models based on an introduced exotic pet turtle. Biol Conserv 142:2258–2269

    Article  Google Scholar 

  • Telecky TM (2001) United States import and export of live turtles and tortoises. Turtle Tortoise Newsl 4:8–13

    Google Scholar 

  • Thuiller W, Lafourcade B, Engler R, Araujo MB (2009) BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32:369–373

    Article  Google Scholar 

  • Van Wilgen NJ, Richardson DM (2012) The roles of climate, phylogenetic relatedness, introduction effort, and reproductive traits in the establishment of non-native reptiles and amphibians. Conserv Biol 26:267–277

    Article  PubMed  Google Scholar 

  • van Wilgen NJ, Wilson JRU, Elith J, Wintle BA, Richardson DM (2010) Alien invaders and reptile traders: what drives the live animal trade in South Africa? Anim Conserv 13(Suppl. 1):24–32

    Article  Google Scholar 

  • Vargas-Ramirez M, Vences M, Branch WR, Daniels SR, Glaw F, Hofmeyr MD, Kuchling G, Maran J, Papenfuss TJ, Siroky P, Vieites DR, Fritz U (2010) Deep genealogical lineages in the widely distributed African helmeted terrapin: evidence from mitochondrial and nuclear DNA (Testudines: Pelomedusidae: Pelomedusa subrufa). Mol Phylogenet Evol 56:428–440

    Article  PubMed  Google Scholar 

  • Ward JP, Jackson DR (2008) Pseudemys concinna (LeConte 1830)—River Cooter. In: Rhodin AGJ, Pritchard PCH, Van Dijk PP et al (eds) Conservation biology of freshwater turtles and tortoises: a compilation project of the IUCN/SSC tortoise and freshwater turtle specialist group. Chelonian research monographs No 5. Chelonian Research Foundation, http://www.iucn-tftsg.org/cbftt/, pp 006.001–006.007

  • Wilson DS, Mushinsky HR, McCoy ED (1999) Nesting behavior of the striped mud turtle, Kinosternon baurii (Testudines : Kinosternidae). Copeia 1999:958–968

    Article  Google Scholar 

Download references

Acknowledgments

We thank D. Pezzini for help during data collection. Two reviewers and P. Genovesi provided insightful comments on earlier version of this study. G.F.F. was funded by a scholarship of Univ. Milano-Bicocca.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gentile Francesco Ficetola.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1,636 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masin, S., Bonardi, A., Padoa-Schioppa, E. et al. Risk of invasion by frequently traded freshwater turtles. Biol Invasions 16, 217–231 (2014). https://doi.org/10.1007/s10530-013-0515-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-013-0515-y

Keywords

Navigation