Skip to main content
Log in

Current state of the art in continuous bioprocessing

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

There is an upsurge of interest in continuous bioprocessing, but currently continuous downstream bioprocessing has not been implemented to generate clinical material. This review focusses on the current state of the art of continuous downstream processing, highlighting the key advantages over traditional batch manufacturing. This allows the identification of scenarios where continuous downstream processing may be critical for commercial manufacturing success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alsaab H, Sau S, Alzhrani R et al (2017) PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol 8:561

    Article  PubMed  PubMed Central  Google Scholar 

  • Association Alzheimer’s (2016) Alzheimer’s disease facts and figures. Alzheimers Dement 12(4):459–509

    Article  Google Scholar 

  • Bell D, Dunnill P, Esser K, Flaschel E, Hoare M, Holló J, Kula M-R, Lang-Hinrichs C, Nyeste L, Pécs M, Sevella B (2013) Downstream processing. Springer, New York

    Google Scholar 

  • Biopharm International, Outsourcing resources 2017

  • BioPlan White Paper (2015) Continuous bioprocessing: industry demanding more data to make decisions. BioPlan Associates Inc, Rockville

    Google Scholar 

  • Bisschops M, Brower M (2013) The impact of continuous multicolumn chromatography on biomanufacturing efficiency. Pharm Bioprocess 1(4):361–372

    Article  Google Scholar 

  • Bisschops M, Frick L, Fulton S, Ransohoff T (2009) Single-use, continuous-countercurrent, multicolumn chromatography. BioProcess Int 7:S18–S23

    Google Scholar 

  • Boedeker B (2001) Production processes of licensed recombinant factor VIII preparations. Semin Thromb Hemost 27(4):385–394

    Article  CAS  PubMed  Google Scholar 

  • Boedeker B, Magnus J (2017) Opportunities and limitations of continuous processing and use of disposables. Am Pharm Rev 20(1)

  • Brower M, Pollard D, Hung F (2015) Protein Refinery Operations Lab (PRO Lab): a sandbox for continuous protein production & advanced process control. Proceedings of integrated continuous biomanufacturing II. http://dc.engconfintl.org/biomanufact_ii/82/

  • Clapperton R (2001) Practical use of continuous processing in developing and scaling up. Org Process Res Dev 5(6):613–621

    Article  CAS  Google Scholar 

  • Dörner T, Kay J (2015) Biosimilars in rheumatology: current perspectives and lessons learnt. Nat Rev Rheumatol 11(12):713–724

    Article  PubMed  CAS  Google Scholar 

  • Fletcher H (2010) Turn batch to continuous processing. Manuf Chem 24–26. https://www.manufacturingchemist.com/news/article_page/Turn_batch_to_continuous_processing/54954

  • Godawat R, Konstantinov K, Rohani M, Warikoo V (2015) End-to-end integrated fully continuous production of mAbs. J Biotechnol 213:13–19

    Article  CAS  PubMed  Google Scholar 

  • Goudar C, Domach M (2017) Special section on continuous bioprocessing and welcome professor Liu to the editorial board. Biotechnol Progr 33:853

    Article  CAS  Google Scholar 

  • Hammerschmidt N, Tscheliessnig A, Sommer R, Helk B, Jungbauer A (2014) Economics of recombinant antibody production processes at various scales: industry-standard compared to continuous precipitation. Biotechnol J 9:766–775

    Article  CAS  PubMed  Google Scholar 

  • Hernandez R (2017) Unifying continuous biomanufacturing operations. BioPharm Int 30(6):14–19

    Google Scholar 

  • Hummel J, Pagkaliwangan M, Gjoka X, Davidovits T, Stock R, Ransohoff T, Gantier R, Schofield M (2018) Modeling the downstream processing of monoclonal antibodies reveals cost advantages for continuous methods for a broad range of manufacturing scales. Biotechnol J. https://doi.org/10.1002/biot.201700665

    Article  PubMed  Google Scholar 

  • James F, Leslie W, Heather S, Kate L, Alvydas M, John O, Jeff S (2016) First-inhuman, double-blind, placebo-controlled, single-dose escalation study of aducanumab (BIIB037) in mild-to-moderate Alzheimer’s disease. Alzheimers Dement 2:169–176

    Google Scholar 

  • Kelley B (2009) Industrialization of mAb production technology. The bioprocessing industry at a crossroads. mAbs 1(5):443–452

    Article  PubMed  PubMed Central  Google Scholar 

  • Klutz S, Magnus J, Lobedann M, Schwan P, Maiser B, Niklas J, Temming M, Schembecker G (2015) Developing the biofacility of the future based on continuous processing and single-use technology. J Biotechnol 213:120–130

    Article  CAS  PubMed  Google Scholar 

  • Konstantinov K, Cooney C (2015) White paper on continuous bioprocessing. J Pharm Sci 104(3):813–820

    Article  CAS  PubMed  Google Scholar 

  • Laird T (2007) Continuous processes in small-scale manufacture. Org Process Res Dev 11(6):927

    Article  CAS  Google Scholar 

  • Lansing SD (1920) The paper machine—its history and future development. Pap Mak J 20:17–21

    Google Scholar 

  • Levine H, Stock R, Lilja J, Gaasvik A, Hummel H, Ransohoff T, Jones SD (2013) Single-use technology and modular construction. Biopharm International 11(4):40–45

    CAS  Google Scholar 

  • Okazaki T, Honjo T (2006) The PD-1-PD-L pathway in immunological tolerance. Trends Immunol 27:195–201

    Article  CAS  PubMed  Google Scholar 

  • Ozturk S (2014) Opportunities and challenges for the implementation of continuous processing in biomanufacturing. Wiley, New York

    Book  Google Scholar 

  • Pearson S (2006) Multiproduct manufacturing facilities: despite contamination and compliance concerns, flexibility remains the key driver. Genet Eng News 26:42–43

    Google Scholar 

  • Piachaud B (2002) Outsourcing in the pharmaceutical manufacturing process: an examination of the CRO experience. Technovation 22(2):81–90

    Article  Google Scholar 

  • Poggioli G, Laureti S, Campieri M et al (2007) Infliximab in the treatment of Crohn’s disease. Ther Clin Risk Manag 3(2):301–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollard D, Brower M, Abe Y, Lopes A, Sinclair A (2017) Standardized economic cost modeling for next-generation MAb production. Bioprocess Int 14(8):14–23

    Google Scholar 

  • Pollard D, Brower M, Richardson D (2018) Progress toward automated single-use continuous monoclonal antibody manufacturing via the protein refinery operations lab. Continuous biomanufacturing—innovative technologies and methods: innovative technologies and methods. Wiley-VCH Verlag GmbH & Co, Weinheim

    Google Scholar 

  • Pollock J, Coffman J, Ho SV, Farid SS (2017) Integrated continuous bioprocessing: economic, operational, and environmental feasibility for clinical and commercial antibody manufacture. Biotechnol Prog 33(4):854–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reay D, Ramshaw C, Harvey A (2008) Process intensification: engineering for efficiency, sustainability and flexibility. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Steiner R, Jornitz M (2017) Continuous processing in the pharmaceutical industry: status and perspective. Wiley, New York

    Google Scholar 

  • Thomas H (2008) Batch-to-continuous—coming out of age. Chem Eng 805:38–45

    CAS  Google Scholar 

  • Walther J, Godawat R, Hwang C, Abe Y, Sinclair A, Konstantinov K (2015) The business impact of an integrated continuous biomanufacturing platform for recombinant protein production. J Biotechnol 213:3–12

    Article  CAS  PubMed  Google Scholar 

  • Warikoo V, Godawat R, Brower K, Jain S, Cummings D, Simons E, Johnson T, Walther J, Yu M, Wright B, McLarty J, Karey K, Hwang C, Zhou W, Riske F, Konstantinov K (2012) Integrated continuous production of recombinant therapeutic proteins. Biotechnol Bioeng 109:3018–3029

    Article  CAS  PubMed  Google Scholar 

  • Biogen International. https://www.biogen-international.com/en/about-biogen/biogen-international/Solothurn-Biologics-Manufacturing-Facility.html

  • Zhu M, Mollet M, Hubert R (2012) Industrial production of therapeutic proteins: cell lines, cell culture, and purification. In: Kent J (ed) Handbook of industrial chemistry and biotechnology. Springer, Boston

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Schofield.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schofield, M. Current state of the art in continuous bioprocessing. Biotechnol Lett 40, 1303–1309 (2018). https://doi.org/10.1007/s10529-018-2593-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-018-2593-5

Keywords

Navigation