Skip to main content
Log in

Whole genome sequences in pulse crops: a global community resource to expedite translational genomics and knowledge-based crop improvement

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Unprecedented developments in legume genomics over the last decade have resulted in the acquisition of a wide range of modern genomic resources to underpin genetic improvement of grain legumes. The genome enabled insights direct investigators in various ways that primarily include unearthing novel structural variations, retrieving the lost genetic diversity, introducing novel/exotic alleles from wider gene pools, finely resolving the complex quantitative traits and so forth. To this end, ready availability of cost-efficient and high-density genotyping assays allows genome wide prediction to be increasingly recognized as the key selection criterion in crop breeding. Further, the high-dimensional measurements of agronomically significant phenotypes obtained by using new-generation screening techniques will empower reference based resequencing as well as allele mining and trait mapping methods to comprehensively associate genome diversity with the phenome scale variation. Besides stimulating the forward genetic systems, accessibility to precisely delineated genomic segments reveals novel candidates for reverse genetic techniques like targeted genome editing. The shifting paradigm in plant genomics in turn necessitates optimization of crop breeding strategies to enable the most efficient integration of advanced omics knowledge and tools. We anticipate that the crop improvement schemes will be bolstered remarkably with rational deployment of these genome-guided approaches, ultimately resulting in expanded plant breeding capacities and improved crop performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abbo S, Saranga Y, Peleg Z, Kerem Z, Lev-Yadun S, Gopher A (2009) Reconsidering domestication of legumes versus cereals in the ancient near east. Q Rev Biol 84:29–50

    Article  PubMed  Google Scholar 

  • Abe A, Kosugi S, Yoshida K, Natsume S et al (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178

    Article  CAS  PubMed  Google Scholar 

  • Austin RS, Chatfield SP, Desveaux D, Guttman DS (2014) Next-generation mapping of genetic mutations using bulk population sequencing. Methods Mol Biol 1062:301–315

    Article  PubMed  Google Scholar 

  • Bohra A (2013) Emerging paradigms in genomics-based crop improvement. Sci World J 585467:17

    Google Scholar 

  • Bohra A, Pandey MK, Jha UC, Singh B et al (2014a) Genomics-assisted breeding in the four major pulse crops of developing countries: present status and prospects. Theor Appl Genet 127:1263–1291

    Article  PubMed Central  PubMed  Google Scholar 

  • Bohra A, Jha UC, Kavi Kishor PB, Pandey S, Singh NP (2014b) Genomics and molecular breeding in lesser explored pulse crops: current trends and future opportunities. Biotechnol Adv 32:1410–1428

    Article  CAS  PubMed  Google Scholar 

  • Bohra A, Sahrawat KL, Kumar S, Joshi R, Parihar AK, Singh U, Singh D, Singh NP (2015a) Genetics- and genomics-based interventions for nutritional enhancement of grain legume crops: status and outlook. J Appl Genet. doi:10.1007/s13353-014-0268-z

    PubMed  Google Scholar 

  • Bohra A, Singh IP, Yadav AK, Pathak A et al (2015b) Utility of informative SSR markers in the molecular characterization of cytoplasmic genetic male sterility-based hybrid and its parents in pigeon pea. Natl Acad Sci Lett 38:13–19

    Article  CAS  Google Scholar 

  • Brachi B, Morris GP, Borevitz JO (2011) Genome-wide association studies in plants: the missing heritability is in the field. Genome Biol 12:232

    Article  PubMed Central  PubMed  Google Scholar 

  • Burns MJ, Edwards KJ, Newbury HJ, Ford-Lloyd BV, Baggott CD (2001) Development of simple sequence repeat (SSR) markers for the assessment of gene flow and genetic diversity in pigeon pea (Cajanus cajan). Mol Ecol Notes 1:283–285

    Article  CAS  Google Scholar 

  • Cubillos FA, Coustham V, Loudet O (2012) Lessons from eQTL mapping studies: non-coding regions and their role behind natural phenotypic variation in plants. Curr Opin Plant Biol 15:192–198

    Article  CAS  PubMed  Google Scholar 

  • Das A, Parida SK (2014) Advances in biotechnological applications in three important food legumes. Plant Biotechnol Rep 8:83–99

    Article  Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510

    Article  CAS  PubMed  Google Scholar 

  • Deokar A, Ramsay L, Sharpe AG, Diapari M, Sindhu A, Bett K, Warkentin TD, Tar’an B (2014) Genome wide SNP identification in chickpea for use in development of a high density genetic map and improvement of chickpea reference genome assembly. BMC Genomics 15:708

    Article  PubMed Central  PubMed  Google Scholar 

  • Desta ZA, Ortiz R (2014) Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci 19:592–601

    Article  CAS  PubMed  Google Scholar 

  • Doddamani D, Katta MAVSK, Khan AW, Agarwal G, Shah TM, Varshney RK (2014) CicArMiSatDB: the chickpea microsatellite database. BMC Bioinform 15:212

    Article  Google Scholar 

  • Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321

    Article  CAS  PubMed  Google Scholar 

  • Doležel J, Vrána J, Cápal P, Kubaláková M, Burešová V, Šimková H (2014) Advances in plant chromosome genomics. Biotechnol Adv 32:122–136

    Article  PubMed  Google Scholar 

  • Dutta S, Mahato AK, Sharma P, Raje RS, Sharma TR, Singh NK (2013) Highly variable ‘Arhar’ simple sequence repeat markers for molecular diversity and phylogenetic studies in pigeon pea [Cajanus cajan (L.) Millisp.]. Plant Breed 132:191–196

    Article  CAS  Google Scholar 

  • Eichler EE, Flint J, Gibson G, Kong A et al (2010) Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 11:446–450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fekih R, Takagi H, Tamiru M, Abe A et al (2013) MutMap+: genetic mapping and mutant identification without crossing in rice. PLoS One 10:e68529

    Article  Google Scholar 

  • Fridman E, Zamir D (2012) Next-generation education in crop genetics. Curr Opin Plant Biol 15:218–223

    Article  PubMed  Google Scholar 

  • Hamblin MT, Buckler ES, Jannink JL (2011) Population genetics of genomics-based crop improvement methods. Trend Genet 27:98–106

    Article  CAS  Google Scholar 

  • He J, Zhao X, Laroche A, Lu Z, Liu H, Li Z (2014) Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci 5:484

    Article  PubMed Central  PubMed  Google Scholar 

  • Henry RJ (2012) Next-generation sequencing for understanding and accelerating crop domestication. Brief Funct Genomics 11:51–56

    Article  CAS  PubMed  Google Scholar 

  • Hirsch CN, Foerster JM, Johnson JM et al (2014) Insights into the maize pan-genome and pan-transcriptome. Plant Cell 26:121–135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Houle D, Govindaraju DR, Omholt S (2010) Phenomics: the next challenge. Nat Rev Genet 11:855–866

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Han B (2014) Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol 65:531–551

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Feng Q, Qian Q, Zhao Q et al (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19:1068–1076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jackson SA, Iwata A, Lee SH, Schmutz J, Shoemaker R (2011) Sequencing crop genomes. Approaches and applications. New Phytol 191:915–925

    Article  CAS  PubMed  Google Scholar 

  • Jaganathan D, Thudi M, Kale S, Azam S et al (2015) Genotyping-by-sequencing based intra-specific genetic map refines a ‘‘QTL-hotspot” region for drought tolerance in chickpea. Mol Genet Genomics 290:559–571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jain M, Misra G, Patel RK et al (2013) A draft genome sequence of the pulse crop chickpea Cicer arietinum L. Plant J 74:715–729

    Article  CAS  PubMed  Google Scholar 

  • Jansen RC, Nap JP (2001) Genetical genomics: the added value from segregation. Trends Genet 17:388–391

    Article  CAS  PubMed  Google Scholar 

  • Jarquín D, Kocak K, Posadas L, Hyma K, Jedlicka J, Graef G, Lorenz A (2014) Genotyping by sequencing for genomic prediction in a soybean breeding population. BMC Genomics 15:740

    Article  PubMed Central  PubMed  Google Scholar 

  • Kang YJ, Kim SK, Kim MY, Lestari P et al (2014) Genome sequence of mungbean and insights into evolution within Vigna species. Nat Commun. doi:10.1038/ncomms6443

    Google Scholar 

  • Kang YJ, Satyawan D, Shim S, Lee T et al (2015) Draft genome sequence of adzuki bean, Vigna angularis. Sci Rep. doi:10.1038/ncomms6443

    Google Scholar 

  • Lam HM, Xu X, Liu X et al (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42:1053–1059

    Article  CAS  PubMed  Google Scholar 

  • Lindner H, Raissig MT, Sailer C, Shimosato-Asano H, Bruggmann R, Grossniklaus U (2012) SNP-Ratio Mapping (SRM): identifying lethal alleles and mutations in complex genetic backgrounds by next-generation sequencing. Genetics 191:1381–1386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu S, Yeh CT, Tang HM, Nettleton D, Schnable PS (2012) Gene mapping via bulked segregant RNA-seq (BSR-seq). PLoS One 7:e36406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Magwene PM, Willis JH, Kelly JK (2011) The statistics of bulk segregant analysis using next generation sequencing. PLoS Comput Biol 7:e1002255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marroni F, Pinosio S, Morgante M (2012) The quest for rare variants: pooled multiplexed next generation sequencing in plants. Front Plant Sci 3:133

    Article  PubMed Central  PubMed  Google Scholar 

  • Mascher M, Richmond TA, Gerhardt DJ, Himmelbach A et al (2013) Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. Plant J 76:494–505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mascher M, Jost M, Kuon JE, Himmelbach A et al (2014) Mapping-by-sequencing accelerates forward genetics in barley. Genome Biol 15:R78

    Article  PubMed Central  PubMed  Google Scholar 

  • Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R (2005) The microbial pan-genome. Curr Opin Genet Dev 15:589–594

    Article  CAS  PubMed  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed Central  PubMed  Google Scholar 

  • Michael TP, Jackson S (2013) The first 50 plant genomes. Plant Genome 6:1–7

    Article  Google Scholar 

  • Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147:969–977

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morrell PL, Buckler ES, Ross-Ibarra J (2012) Crop genomics: advances and applications. Nat Rev Genet 13:85–96

    CAS  Google Scholar 

  • Pang AW, MacDonald JR, Pinto D, Wei J et al (2010) Towards a comprehensive structural variation map of an individual human genome. Genome Biol 11:R52

    Article  PubMed Central  PubMed  Google Scholar 

  • Parihar AK, Dixit GP (2014) Varietal spectrum of seed production of pulses in India: an updated approach. Proc Natl Acad Sci India Sect B. doi:10.1007/s40011-014-0456-y

    Google Scholar 

  • Paux E, Sourdille P, Mackay I, Feuillet C (2012) Sequence-based marker development in wheat: advances and applications to breeding. Biotechnol Adv 30:1071–1088

    Article  CAS  PubMed  Google Scholar 

  • Pazhamala L, Saxena RK, Singh VK, Sameerkumar C et al (2015) Genomics-assisted breeding for boosting crop improvement in pigeon pea (Cajanus cajan). Front Plant Sci 6:50

    Article  PubMed Central  PubMed  Google Scholar 

  • Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome 5:92–102

    Article  CAS  Google Scholar 

  • Pretty J, Bharucha ZP (2014) Sustainable intensification in agricultural systems. Ann Bot. doi:10.1093/aob/mcu205

    PubMed  Google Scholar 

  • Ruperao P, Chan CKK, Azam S, Karafiátová M et al (2014) A chromosomal genomics approach to assess and validate the desi and kabuli draft chickpea genome assemblies. Plant Biotechnol J 12:778–786

    Article  CAS  PubMed  Google Scholar 

  • Sarika, Arora V, Iquebal MA, Rai A, Kumar D (2013) PIPEMicroDB: microsatellite database and primer generation tool for pigeon pea genome. Database 2013:bas054

  • Saxena RK, Edwards D, Varshney RK (2014) Structural variations in plant genomes. Brief Funct Genomics 13:296–307

    Article  PubMed Central  PubMed  Google Scholar 

  • Schatz MC, Witkowski J, McCombie WR (2012) Current challenges in de novo plant genome sequencing and assembly. Genome Biol 13:1–7

    Article  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J et al (2010) Genome sequence of the paleopolyploid soybean. Nature 463:178–183

    Article  CAS  PubMed  Google Scholar 

  • Schmutz J, McClean P, Mamidi S, Wu AJ et al (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet 46:707–713

    Article  CAS  PubMed  Google Scholar 

  • Schneeberger K (2014) Using next-generation sequencing to isolate mutant genes from forward genetic screens. Nat Rev Genet 15:662–676

    Article  CAS  PubMed  Google Scholar 

  • Schneeberger K, Weigel D (2011) Fast-forward genetics enabled by new sequencing technologies. Trends Plant Sci 16:282–288

    Article  CAS  PubMed  Google Scholar 

  • Schneeberger K, Ossowski S, Lanz C, Juul T, Petersen AH, Nielsen KL, Jorgensen J-E, Weigel D, Andersen SU (2009) SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nat Methods 6:550–551

    Article  CAS  PubMed  Google Scholar 

  • Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP (2014) Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet 15:121–132

    Article  CAS  PubMed  Google Scholar 

  • Singh NK, Gupta DK, Jayaswal PK, Mahato AK et al (2012) The first draft of the pigeon pea genome sequence. J Plant Biochem Biotechnol 21:98–112

    Article  PubMed Central  PubMed  Google Scholar 

  • Song Q, Hyten DL, Jia G et al (2013) Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PLoS One 8:e54985

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Springer NM, Ying K, Fu Y, Ji T et al (2009) Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content. PLoS Genet 5:e1000734

    Article  PubMed Central  PubMed  Google Scholar 

  • Takagi H, Uemura A, Yaegashi H, Tamiru M et al (2013a) MutMap-Gap: whole-genome resequencing of mutant F2 progeny bulk combined with de novo assembly of gap regions identifies the rice blast resistance gene Pii. New Phytol 200:276–283

    Article  CAS  PubMed  Google Scholar 

  • Takagi H, Abe A, Yoshida K, Kosugi S et al (2013b) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183

    Article  CAS  PubMed  Google Scholar 

  • Tsai H, Howell T, Nitcher R, Missirian V et al (2011) Discovery of rare mutations in populations: TILLING by sequencing. Plant Physiol 156:1257–1268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trend Plant Sci 10:621–630

    Article  CAS  Google Scholar 

  • Varshney RK, Nayak S, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trend Biotechnol 27:522–530

    Article  CAS  Google Scholar 

  • Varshney RK, Ribaut JM, Buckler ES, Tuberosa R, Rafalski JA, Langridge P (2012a) Can genomics boost productivity of orphan crops. Nat Biotechnol 30:1172–1176

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Chen W, Li Y, Bharti AK et al (2012b) Draft genome sequence of pigeon pea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30:83–89

    Article  CAS  Google Scholar 

  • Varshney RK, Song C, Saxena RK et al (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Kudapa H, Pazhamala L, Chitikineni A et al (2015) Translational genomics in agriculture: some examples in grain legumes. Crit Rev Plant Sci 34:169–194

    Article  Google Scholar 

  • Wolf JBW (2013) Principles of transcriptome analysis and gene expression quantification: an RNA-seq tutorial. Mol Ecol Resour 13:559–572

    Article  CAS  PubMed  Google Scholar 

  • Xie K, Yang Y (2013) RNA-guided genome editing in plants using A CRISPR-Cas System. Mol Plant 6:1975–1983

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Tao Y, Zheng Z, Zhang Q, Zhou G, Sweetingham MW, Howieson JG, Li C (2013a) Draft genome sequence, and a sequence-defined genetic linkage map of the legume crop species Lupinus angustifolius L. PLoS One 8:e64799

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang H, Tao Y, Zheng Z, Shao D et al (2013b) Rapid development of molecular markers by next-generation sequencing linked to a gene conferring phomopsis stem blight disease resistance for marker-assisted selection in lupin (Lupinus angustifolius L.) breeding. Theor Appl Genet 126:511–522

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551

    Article  PubMed Central  PubMed  Google Scholar 

  • Zamir D (2013) Where have all the crop phenotypes gone? PLoS Biol 11:e1001595

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Authors acknowledge support from the Indian Council of Agricultural Research (ICAR), New Delhi, India.

Conflict of interest

Authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Bohra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bohra, A., Singh, N.P. Whole genome sequences in pulse crops: a global community resource to expedite translational genomics and knowledge-based crop improvement. Biotechnol Lett 37, 1529–1539 (2015). https://doi.org/10.1007/s10529-015-1836-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-015-1836-y

Keywords

Navigation