Skip to main content
Log in

Hollow fibre membrane bioreactors for tissue engineering applications

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Hollow fibre membrane bioreactors (HFB) provide a novel approach towards tissue engineering applications in the field of regenerative medicine. For adherent cell types, HFBs offer an in vivo-like microenvironment as each fibre replicates a blood capillary and the mass transfer rate across the wall is independent from the shear stresses experienced by the cell. HFB also possesses the highest surface area to volume ratio of all bioreactor configurations. In theory, these factors enable a high quantity of the desired cellular product with less population variation, and favourable operating costs. Experimental analyses of different cell types and bioreactor designs show encouraging steps towards producing a clinically relevant device. This review discusses the basic HFB design for cell expansion and in vitro models; compares data produced on commercially available systems and addresses the operational differences between theory and practice. HFBs are showing some potential for mammalian cell culture but further work is needed to fully understand the complexities of cell culture in HFBs and how best to achieve the high theoretical cell yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bellis SL (2011) Advantages of RGD peptides for directing cell association with biomaterials. Biomaterials 32:4205–4210

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bernstein HS, Srivastava D (2012) Stem cell therapy for cardiac disease. Pediatr Res 71(4):491–499

    Article  PubMed  CAS  Google Scholar 

  • Burke ZD, Tosh D (2006) The Wnt/beta-catenin pathway: master regulator of liver zonation? BioEssays 28:1072–1077

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Palmer AF (2009) Hemoglobin-based oxygen carrier and convection enhanced oxygen transport in a hollow fiber bioreactor. Biotechnol Bioeng 102:1603–1612

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Palmer AF (2010) Hemoglobin regulates the metabolic, synthetic, detoxification, and biotransformation functions of hepatoma cells cultured in a hollow fiber bioreactor. Tissue Eng Part A 16:3231–3240

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Davidson AJ, Ellis MJ, Chaudhuri JB (2012) A theoretical approach to zonation in a bioartificial liver. Biotechnol Bioeng 109:234–243

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • De Bartolo L, Morelli S, Bader A, Drioli E (2002) Evaluation of cell behaviour related to physico-chemical properties of polymeric membranes to be used in bioartificial organs. Biomaterials 23:2485–2497

    Article  PubMed  Google Scholar 

  • Ellis MJ, Chaudhuri JB (2007) Poly(lactic-co-glycolic acid) hollow fibre membranes for use as a tissue engineering scaffold. Biotechnol Bioeng 96:177–187

    Article  PubMed  CAS  Google Scholar 

  • Ellis MJ, Chaudhuri JB (2008) Human bone derived cell culture on PLGA flat sheet membranes of different lactide: glycolide ratio. Biotechnol Bioeng 101:369–377

    Article  PubMed  CAS  Google Scholar 

  • Ellis M, Jarman-Smith M, Chaudhuri JB (2005) Bioreactor systems for tissue engineering: a four-dimensional challenge. In: Chaudhuri J, Al-Rubeai M (eds) Bioreactors for tissue engineering. Springer, Dordrecht, pp 1–18

    Chapter  Google Scholar 

  • FiberCell (2014) Hollow fiber bioreactors and related products. http://www.nbsbio.co.uk/downloads/fibercell_brochure.pdf. Accessed 20 May 2014

  • Gautier A, Ould-Dris A, Dufresne M, Paullier P, Von Harten B, Lemke H-D, Legallais C (2009) Hollow fiber bioartificial liver: physical and biological characterization with C3A cells. J Membr Sci 341:203–213

    Article  CAS  Google Scholar 

  • Gerecht-Nir S, Cohen S, Ziskind A, Itskovitz-Eldor J (2004) Three-dimensional porous alginate scaffolds provide a conductive environment for generation of well-vascularized embryoid bodies from human embryonic stem cells. Biotechnol Bioeng 88:313–320

    Article  PubMed  CAS  Google Scholar 

  • Grek CL, Newton DA, Qiu YZ, Wen XJ, Spyropoulos DD, Baatz JE (2009) Characterization of alveolar epithelial cells cultured in semipermeable hollow fibers. Exp Lung Res 35:155–174

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gundersen SI, Chen G, Powell HM, Palmer AF (2010) Hemoglobin regulates the metabolic and synthetic function of rat insulinoma cells cultured in a hollow fiber bioreactor. Biotechnol Bioeng 107:582–592

    Article  PubMed  CAS  Google Scholar 

  • Hoesli CA, Luu M, Piret JM (2009) A novel alginate hollow fiber bioreactor process for cellular therapy applications. Biotechnol Prog 25:1740–1751

    PubMed  CAS  Google Scholar 

  • Jacobs T, Morent R, Geyter N, Dubruel P, Leys C (2012) Plasma surface modification of biomedical polymers: influence on cell-material interaction. Plasma Chem Plasma Proc 32:1039–1073

    Article  CAS  Google Scholar 

  • Nguyen K, Brecheisen BS, Peters R, Startz T, Vang B, Baila S (2012) Automated expansion of human mesenchymal stem cells from precultured cells using the quantum cell expansion system. Online: Terumo BCT.

  • Niemeyer P, Fechner K, Milz S, Richter W, Suedkamp NP, Mehlhorn AT, Pearce S, Kasten P (2010) Comparison of mesenchymal stem cells from bone marrow and adipose tissue for bone regeneration in a critical size defect of the sheep tibia and the influence of platelet-rich plasma. Biomaterials 31:3572–3579

    Article  PubMed  CAS  Google Scholar 

  • Nold P, Brendel C, Neubauer A, Bein G, Hackstein H (2013) Good manufacturing practice-compliant animal-free expansion of human bone marrow derived mesenchymal stroma cells in a closed hollow-fiber-based bioreactor. Biochem Biophys Res Commun 430:230–325

    Article  Google Scholar 

  • Oh HI, Ye SH, Johnson CA, Woolley JR, Federspiel WJ, Wagner WR (2010) Hemocompatibility assessment of carbonic anhydrase modified hollow fiber membranes for artificial lungs. Artif Org 34:439–442

    Article  Google Scholar 

  • Oo ZY, Deng RS, Hui M, Ni M, Kandasamy K, Bin Ibrahim MS, Ying JY, Zink D (2011) The performance of primary human renal cells in hollow fiber bioreactors for bioartificial kidneys. Biomaterials 32:8806–8815

    Article  PubMed  CAS  Google Scholar 

  • Ott M, Ballermann B (1995) Shear stress-conditioned, endothelial cell-seeded vascular grafts: improved cell adherence in response to in vitro shear stress. Surgery 117:334–339

    Article  PubMed  CAS  Google Scholar 

  • Patzer JF (2004) Oxygen consumption in a hollow fiber bioartificial liver-revisited. Artif Org 28:83–98

    Article  Google Scholar 

  • Roberts I, Baila S, Rice RB, Janssens ME, Nguyen K, Moens N, Ruban L, Hernandez D, Coffey P, Mason C (2012) Scale-up of human embryonic stem cell culture using a hollow fibre bioreactor. Biotechnol Lett 34:2307–2315

    Article  PubMed  CAS  Google Scholar 

  • Seliktar D (2012) Designing cell-compatible hydrogels for biomedical applications. Science 336:1124–1128

    Article  PubMed  CAS  Google Scholar 

  • Shin SR, Jung SM, Zalabany M, Kim K, Zorlutuna P, Kim SB, Nikkhah M, Khabiry M, Azize M, Kong J et al (2013) Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano 7:2369–2380

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shipley RJ, Waters SL, Ellis MJ (2010) Definition and validation of operating equations for poly(vinyl alcohol)-poly(lactide-co-glycolide) microfiltration membrane-scaffold bioreactors. Biotechnol Bioeng 107:382–392

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shipley RJ, Davidson AJ, Chan K, Chaudhuri JB, Waters SL, Ellis MJ (2011) A strategy to determine operating parameters in tissue engineering hollow fiber bioreactors. Biotechnol Bioeng 108:1450–1461

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Simaria AS, Hassan S, Varadaraju H, Rowley J, Warren K, Vanek P, Farid SS (2014) Allogeneic cell therapy bioprocess economics and optimization: single-use cell expansion technologies. Biotechnol Bioeng 111:69–83

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Soardi CM, Spinato S, Zaffe D, Wang HL (2011) Atrophic maxillary floor augmentation by mineralized human bone allograft in sinuses of different size: an histologic and histomorphometric analysis. Clin Oral Implant Res 22:560–566

    Article  Google Scholar 

  • Spectrum Laboratories (2012) CELLMAX Hollow fiber bioreactors—a low cost alternative to conventional cell culture methods. https://webshop.fishersci.com/webfiles/uk/web-docs/CELLMAX.PDF. Accessed 20 May 2014

  • Sullivan JP, Gordon JE, Bou-Akl T, Matthew HW, Palmer AF (2007) Enhanced oxygen delivery to primary hepatocytes within a hollow fiber bioreactor facilitated via hemoglobin-based oxygen carriers. Artif Cell Blood Subst Immob Biotechnol 35:585–606

    Article  CAS  Google Scholar 

  • Sun T, Jackson S, Haycock JW, MacNeil S (2006) Culture of skin cells in 3D rather than 2D improves their ability to survive exposure to cytotoxic agents. J Biotechnol 122:372–381

    Article  PubMed  CAS  Google Scholar 

  • Titmarsh D, Hidalgo A, Turner J, Wolvetang E, Cooper-White J (2011) Optimization of flowrate for expansion of human embryonic stem cells in perfusion microbioreactors. Biotechnol Bioeng 108:2894–2904

    Article  PubMed  CAS  Google Scholar 

  • Torres J, Tamimi F, Alkhraisat MH, Prados-Frutos JC, Rastikerdar E, Gbureck U, Barralet JE, Lopez-Cabarcos E (2011) Vertical bone augmentation with 3D-synthetic monetite blocks in the rabbit calvaria. J Clin Periodontol 38:1147–1153

    Article  PubMed  Google Scholar 

  • Usuludin SBM, Cao X, Lim M (2012) Co-culture of stromal and erythroleukemia cells in a perfused hollow fiber bioreactor system as an in vitro bone marrow model for myeloid leukemia. Biotechnol Bioeng 109:1248–1258

    Article  PubMed  CAS  Google Scholar 

  • Vermonden T, Censi R, Hennink WE (2012) Hydrogels for protein delivery. Chem Rev 112:2853–2888

    Article  PubMed  CAS  Google Scholar 

  • Williams DJ, Thomas RJ, Hourd PC, Chandra A, Ratcliffe E, Liu Y, Rayment EA, Archer JR (2012) Precision manufacturing for clinical-quality regenerative medicines. Phil Trans R Soc 370:3924–3949

    Article  CAS  Google Scholar 

  • Yamazoe H, Iwata H (2006) Efficient generation of dopaminergic neurons from mouse embryonic stem cells enclosed in hollow fibers. Biomaterials 27:4871–4880

    Article  PubMed  CAS  Google Scholar 

  • Zeilinger K, Schreiter T, Darnell M, Soderdahl T, Lubberstedt M, Dillner B, Knobeloch D, Nussler AK, Gerlach JC, Andersson TB (2011) Scaling down of a clinical three-dimensional perfusion multicompartment hollow fiber liver bioreactor developed for extracorporeal liver support to an analytical scale device useful for hepatic pharmacological in vitro studies. Tissue Eng Part C 17:549–556

    Article  CAS  Google Scholar 

  • Zhang S, Liu T, Chen L, Ren M, Zhang B, Wang Z, Wang Y (2012) Bifunctional polyethersulfone hollow fiber with a porous, single-layer skin for use as a bioartificial liver bioreactor. J Mater Sci 23:2001–2011

    CAS  Google Scholar 

  • Zhou X, Rowe RG, Hiraoka N, George JP, Wirtz D, Mosher DF, Virtanen I, Ma C, Weiss SJ (2008) Fibronectin fibrillogenesis regulates three-dimensional neovessel formation. Gene Dev 22:1231–1243

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianne J. Ellis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wung, N., Acott, S.M., Tosh, D. et al. Hollow fibre membrane bioreactors for tissue engineering applications. Biotechnol Lett 36, 2357–2366 (2014). https://doi.org/10.1007/s10529-014-1619-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-014-1619-x

Keywords

Navigation