Skip to main content
Log in

Production Kinetics and Tensioactive Characteristics of Biosurfactant from a Pseudomonas aeruginosa Mutant Grown on Waste Frying Oils

  • ORIGINAL PAPER
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Various waste frying oils (WFOs) were evaluated as substrates for rhamnolipid production by Pseudomonas aeruginosa mutant EBN-8 in the presence or absence of rhamnolipid precursor, under single-/batch-fed conditions. Soybean WFO was the best substrate, producing 9.3 g rhamnolipid l−1 with the specific product yield of 2.7 g g−1 h, under batch-fed cultivation with the addition of rhamnolipid precursor. The surface tension of the cell-free culture broth (CFCB) was 29.1 mN m−1 and the interfacial tension against n-hexadecane was <1 mN m−1. The hydrocarbon/ CFCB systems showed the relative emulsion stability to be in the range of 89.7–92.3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aiba S, Humphrey AE, Millis NF (1973) Biochemical engineering. Academic Press, New York, pp 75–106

    Google Scholar 

  • Al-Tahan RA, Sandrin TR, Bodour AA, Maier RM (2000) Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates. Appl Environ Microbiol 66:3262–3268

    Article  Google Scholar 

  • Beal R, Betts WB (2000) Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane in Pseudomonas aeruginosa. J Appl Microbiol 89:158–168

    Article  PubMed  CAS  Google Scholar 

  • Beckman C (2000) Vegetable oil: situation and outlook. Bi-weekly Bull 13:1–6

    Google Scholar 

  • Benincasa M, Abalos A, Oliveira I, Manresa A (2004) Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock. Anton van Leeuwen 85:1–8

    Article  CAS  Google Scholar 

  • Chandrasekaran EV, Bemiller JN (1980) Constituent analyses of glycosaminoglycans. In: Whistler RL, Wolform ML (eds) Methods in carbohydrate chemistry. Academic Press, New York, pp 89–96

    Google Scholar 

  • Chen G, Zhu H (2005) lux-Marked Pseudomonas aeruginosa lipopolysccharide production in the presence of rhamnolipid. Coll Surf 41b:43–48

    Google Scholar 

  • Cirigliano MC, Carman GM (1985) Purification and characterization of liposan, a bioemulsifier from Candida lipolytica. Appl Environ Microbiol 50:846–850

    PubMed  CAS  Google Scholar 

  • Das M, Das SK, Mukherjee RK (1998) Surface active properties of the culture filtrates of a Micrococcus species grown on n-alkanes and sugars. Biores Technol 63:231–235

    Article  CAS  Google Scholar 

  • Del’ Arco JP, de Franka FP (2001) Influence of oil contamination levels in hydrocarbon biodegradation in sandy sediment. Environ Pollut 110:515–519

    Article  Google Scholar 

  • Desai JD (1987) Microbial surfactants: evaluation, types, production and future applications. J Sci Indus Res 46:440–449

    CAS  Google Scholar 

  • Deziel E, Lepine F, Milot S, Villemur R (2000) Mass spectrometry monitoring of rhamnolipids from a growing culture of Pseudomonas aeruginosa strain 57RP. Biochim Biophys Acta 1485:145–152

    PubMed  CAS  Google Scholar 

  • Haba E, Espuny MJ, Busquets M, Manresa A (2000) Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils. J Appl Microbiol 88:379–387

    Article  PubMed  CAS  Google Scholar 

  • Itoh S, Suzuki T (1972) Effect of rhamnolipids on growth of Pseudomonas aeruginosa mutant deficient in n-paraffin-utilizing ability. Agric Biol Chem 36:2233–2235

    CAS  Google Scholar 

  • Koch AK, Kappeli O, Fiechter A, Reiser J (1991) Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. J Bacteriol 173:4212–4219

    PubMed  CAS  Google Scholar 

  • Makker RS, Cameotra SS (2002) An update on the use of unconventional substrates for biosurfactant production and their new applications. Appl Microbiol Biotechnol 58:428–434

    Article  Google Scholar 

  • Nitschke M, Costa SG, Contiero J (2005) Rhamnolipid surfactants: an update on the general aspects of these remarkable biomolecules. Biotechnol Prog 21:1593–1600

    Article  PubMed  CAS  Google Scholar 

  • Parra JL, Pastor J, Comelles F, Manresa MA, Bosch MP (1990) Studies of biosurfactants obtained from olive oil. Tenside Surf Det 27:302–306

    CAS  Google Scholar 

  • Rahman KSM, Rahman TJ, McClean S, Marchant R, Banat IM (2002) Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost materials. Biotechnol Prog 18:1277–1281

    Article  PubMed  CAS  Google Scholar 

  • Raza ZA, Khan MS, Khalid ZM, Rehman A (2006) Production of biosurfactant using different hydrocarbons by Pseudomonas aeruginosa EBN-8 mutant. Z Naturforsch 61c:87–94

    Google Scholar 

  • Robert M, Mercade ME, Bosch MP, Parra JL, Espuny MJ, Manresa MA, Guinea J (1989) Effect of the carbon source on biosurfactant production by Pseudomonas aeruginosa 44T1. Biotechnol Lett 11:871–874

    Article  CAS  Google Scholar 

  • Rosenberg E, Ron EZ (1999) High- and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 52:154–162

    Article  PubMed  CAS  Google Scholar 

  • Shreve GS, Inguva S, Gunnam S (1995) Rhamnolipid biosurfactant enhancement of hexadecane biodegradation by Pseudomonas aeruginosa. Mol Mar Biol Biotechnol 4:331–337

    PubMed  CAS  Google Scholar 

  • Tugrul T, Cansunar E (2005) Detecting surfactant-producing microorganisms by the drop-collapse test. World J Microbiol Biotechnol 21:851–853

    Article  CAS  Google Scholar 

  • Zhang Y, Miller RM (1995) Effect of rhamnolipid (biosurfactant) structure on solubilization and biodegradation of n-alkanes. Appl Environ Microbiol 61:2247–2251

    PubMed  CAS  Google Scholar 

  • Zhang Y, Miller RM (1992) Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfacatnt). Appl Environ Microbiol 58:3276–3282

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Higher Education Commission, Islamabad for funding for this research. Z.A. Raza is grateful to Mrs. G. Abbas for her encouragement, and help in collecting the WFOs samples.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zulfiqar Ali Raza or Zafar M. Khalid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raza, Z.A., Khan, M.S., Khalid, Z.M. et al. Production Kinetics and Tensioactive Characteristics of Biosurfactant from a Pseudomonas aeruginosa Mutant Grown on Waste Frying Oils. Biotechnol Lett 28, 1623–1631 (2006). https://doi.org/10.1007/s10529-006-9134-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-006-9134-3

Keywords

Navigation