Skip to main content
Log in

Mathematical Modeling of the Interaction between a Single-Walled Nanotube Tip and a Biological Surface

  • Published:
Biomedical Engineering Aims and scope

The vibration characteristics of arbitrarily oriented tips made of single-walled carbon nanotubes (SWCNT) applied to biological surfaces of arbitrary scale were studied. A mathematical model was established linking the parameters of the SWCNT tip with its vibration characteristics using d’Alembert’s principle. Modeling was used to study the effects of tip rigidity and geometry on the tip position in three-dimensional space, related to applied aspects of biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ichkitidze, L. P., Selishchev, S. V., Gerasimenko, A. Y., and Podgaetsky, V. M., “Mechanical properties of bulk nanocomposite biomaterial,” Biomed. Eng., 49, 308-311 (2016).

    Article  Google Scholar 

  2. Zhu, H., Xu, Z., Xie, D., and, Fang Y. (eds.), Graphene: Fabrication, Characterizations, Properties and Applications, Academic Press, Beijing (2018).

  3. Kim, S. H., Haines, C. S., Li, N., Kim, K. J., et al., “Harvesting electrical energy from carbon nanotube yarn twist,” Science, 357, No. 6353, 773-778 (2017).

    Article  Google Scholar 

  4. Angeli, D. and Sontag, E. D., “Multi-stability in monotone input/output systems,” Syst. Control Lett., 51, 185-202 (2004).

    Article  MathSciNet  Google Scholar 

  5. Chaves, M., Eissing, T., and Allgower, F., “Bistable biological systems: A characterization through local compact input-to-state stability,” IEEE Trans. Autom. Control, 52, 87-100 (2008).

    Article  MathSciNet  Google Scholar 

  6. Chesiand, G. and Huang, Y. S., “Stability analysis of uncertain genetic sum regulatory networks,” Automatica, 44, 2298-2305 (2008).

    Article  MathSciNet  Google Scholar 

  7. Chen, L. and Aihara, K., “Stability of genetic regulatory networks with time delay,” IEEE Trans. Circuits Syst. I Fundam. Theory Appl., 49, 602-608 (2002).

    Article  MathSciNet  Google Scholar 

  8. Pan, W., Wang, Z., Gao, H., and Liu, X., “Monostability and multistability of genetic regulatory networks with different types of regulation functions,” Nonlinear Anal. Real World Appl., 11, 3170-3185 (2010).

    Article  Google Scholar 

  9. Chesi, G., “Robustness analysis of genetic regulatory networks affected by model uncertainty,” Automatica, 47, No. 6, 1131-1138 (2010).

    Article  MathSciNet  Google Scholar 

  10. Wang, Z., Gao, H., Cao, J., and Liu, X., “On delayed genetic regulatory networks with polytopic uncertainties: Robust stability analysis,” IEEE Trans. Nano. Biosci., 7, No. 2, 154-163 (2008).

    Article  Google Scholar 

  11. Deeva, V. and Slobodyan, S., “Assessment of the tribological contact between sliding surfaces via an entropy approach,” J. Tribol., 141, No. 3, 031602-031602-6 (2019).

  12. Komarov, I. A., Rubtsova, E. N., Lapashina, A. S., Golovin, A. V., and Bobrinetskiy, I. I., “Chemiresistive sensors for thrombin assay based on nanosize carbon nanotube films on flexible supports,” Biomed. Eng., 51, 377-380 (2017).

    Article  Google Scholar 

  13. Arutyunov, V. A. and Slobodyan, S. M., “Investigation of a CCD wave front sensor of an adaptive optics radiation focusing system,” Instr. Exp. Tech., 28, No.1, Part 2, 176-178 (1985).

  14. Cai, J. (ed.), Atomic Force Microscopy in Molecular and Cell Biology, Springer Singapore, Singapore (2018).

    Google Scholar 

  15. Zhao, W., Cui, W., Xu, S., Wang, Y., Zhang, K., Wang, D., Cheong, L.-Z., Besenbacherd, F., and Shen, C., “Direct investigation of charge transfer in neurons by electrostatic force microscopy,” Ultramicroscopy, 196, 24-32 (2019).

    Article  Google Scholar 

  16. Schwille, P., “There and back again: From the origin of life to single molecules,” Eur. Biophys. J., 47, 493-498 (2018).

    Article  Google Scholar 

  17. Cho, Y., Shin, N., Kim, D., Park, J. Y., and Hong, S., “Nanoscale hybrid systems based on carbon nanotubes for biological sensing and control,” Biosci. Rep., 37, 3-30 (2017).

    Article  Google Scholar 

  18. Slobodyan, S., “Optimization of a bimorph drive in optical measuring systems with feedback,” Meas. Techn., 46, No. 1, 28-34 (2003).

    Article  Google Scholar 

  19. Caplins, B. W., Holm, J. D., and Keller, R., “Transmission imaging with a programmable detector in a scanning electron microscope,” Ultramicroscopy, 196, 40-48 (2019).

    Article  Google Scholar 

  20. Özer, H. Ö., “Atomic resolution force imaging through the static deflection of the cantilever in simultaneous scanning tunneling/atomic force microscopy,” Ultramicroscopy, 196, 54-57 (2019).

    Article  Google Scholar 

  21. Wang, Y., Wu, S., Xu, L., and Zeng, Y., “A new precise positioning method for piezoelectric scanner of AFM,” Ultramicroscopy, 196, 67-73 (2019).

    Article  Google Scholar 

  22. Slobodyan, M. S., Slobodyan, S. M., and Tsupin, A., “Optical deflector of a wave-front tilt corrector,” J. Opt. Technol., 75, No. 5, 301-305 (2008).

    Article  Google Scholar 

  23. Mohammadi, S. Z., Moghaddam, M., and Pishkenari, H. N., “Dynamical modeling of manipulation process in trolling-mode AFM,” Ultramicroscopy, 197, 83-94 (2019).

    Article  Google Scholar 

  24. Deeva, V. and Slobodyan, S., “Entropy estimation of a dynamical system via a contact interaction,” in: Safety and Reliability — Theory and Applications. Proceedings of the 27th European Safety and Reliability Conference, ESREL 2017, pp. 2577-2584.

  25. Dai, H., Hafner, J., Rinzler, A., Colbert, D., and Smalley, R., “Nanotubes as nanoprobes in scanning probe microscopy,” Nature, 384, 147-150 (1996).

    Article  Google Scholar 

  26. Zhang, B., Liu, Y., Chen, Q., Lai, Z., and Sheng, P., “Observation of high Tc one dimensional superconductivity in 4 angstrom carbon nanotube arrays,” AIP Advances, 7, 025305 (2017).

    Article  Google Scholar 

  27. Romanishina, S. A., Barchukov, D. A., and Slobodyan, S. M., “The stability of single-walled carbon nanotube: Lyapunov function for probe needle,” in: Proceedings of the 2019 IEEE 39th International Conference on Electronics and Nanotechnology, ELNANO 2019 Proceedings (2019), pp. 21-25.

  28. Burke, P. J., “An RF circuit model for carbon nanotubes,” IEEE Trans. Nanotechnol., 2, 55-58 (2003).

    Article  Google Scholar 

  29. Heath, G. R. and Scheuring, S., “High-speed AFM height spectroscopy reveals μs-dynamics of unlabeled biomolecules,” Nat. Physics, 9, 1-11 (2018).

    Google Scholar 

  30. Romanishina, T. A., Romanishina, S. A., Deeva, V. S., and Slobodyan, S. M., “Numerical modeling of synovial fluid layer,” in: 2017 IEEE International Young Scientists Forum on Applied Physics and Engineering, YSF 2017 (2017), pp. 143-146.

  31. Edgcombe, C., Masur, S., Linscott, E., Whaley, B. J., and Barnes, C., “Analysis of a capped carbon nanotube by linear-scaling density-functional theory,” Ultramicroscopy, 198, 26-32 (2019).

    Article  Google Scholar 

  32. Wagner, T., “Steady-state and transient behavior in dynamic atomic force microscopy,” J. Appl. Physics, 125, 044301-044301-13 (2019).

  33. Slattery, A. D., Shearer, C. J., Shapter, J. G., Blanch, A. J., Quinton, J. S., and Gibson, C. T., “Improved application of carbon nanotube atomic force microscopy probes using peakforce tapping mode,” Nanomaterials, 8, No. 4, 807-819 (2018).

    Article  Google Scholar 

  34. Wong, C., West, P., Olson, K., Mecartney, M., and Starostina, N., “Tip dilation and AFM capabilities in the characterization of nanoparticles,” JOM, 59, 12-16 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Deeva.

Additional information

Translated from Meditsinskaya Tekhnika, Vol. 54, No. 1, Jan.-Feb., 2020, pp. 36-39.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deeva, V.S., Slobodyan, S.M. Mathematical Modeling of the Interaction between a Single-Walled Nanotube Tip and a Biological Surface. Biomed Eng 54, 51–55 (2020). https://doi.org/10.1007/s10527-020-09972-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10527-020-09972-8

Navigation