Skip to main content
Log in

3D Ultrasound: Current State, Emerging Trends and Technologies

  • Published:
Biomedical Engineering Aims and scope

3D/4D ultrasound technology continues to penetrate ever deeper into medical practice. Effective use of this technology requires an understanding of how 3D images are formed. This article explains the principles of the construction of 3D images in medical ultrasound and discloses the physical basis, advantages and drawbacks of 3D scanning methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Osipov, L. V., Ultrasound Diagnostic Devices: Modes, Methods, and Technologies [in Russian], Izomed, Moscow (2011).

    Google Scholar 

  2. Tsakalakis, M., Design of a Novel Low-Cost, Portable, 3D Ultrasound System with Extended Imaging Capabilities for Point-of-Care Applications: PhD Dissertation, Wright State University (2015).

  3. Yiu, B. Y. S., Lai, S. S. M., and Yu, A. C. H., “Vector projectile imaging: Time-resolved dynamic visualization of complex flow patterns,” Ultrasound Med. Biol., 40, 2295-2309 (2014).

    Article  Google Scholar 

  4. Correia, M., Provost, J., Tanter, M., and Pernot, M., “4D ultrafast ultrasound flow imaging: In vivo quantification of arterial volumetric flow rate in a single heartbeat,” Phys. Med. Biol., 61, No. 23, L48-L61 (2016).

    Article  Google Scholar 

  5. Leonov, D. V., Fin, V. A., and Gukasov, V. M., “Modern state and trends in development of medical diagnostic ultrasound devices,” Med. Vysok. Tekhnol., No. 3, 8-13 (2014).

  6. Kulberg, N. S., Gromov, A. I., Leonov, D. V., Osipov, L. V., Usanov, M. S., and Morozov, S. P., “Ultrasound Diagnostic Mode for Kidney Stone and Soft Tissue Calculi Detection,” Radiol.-Prakt., No. 1 (67), 37-49 (2018).

  7. Andreev, V. G., Demin, I. Yu., Korol’kov, Z. A., and Shanin, A. V., “The motion of spherical microparticles in a viscoelastic medium on exposure to acoustic radiation forces,” Izv. Ros. Akad. Nauk. Ser. Fiz., 80, No. 10, 1321-1326 (2016).

    Google Scholar 

  8. Huang, Q., Xie, B., Ye, P., and Chen, Z., “3-D ultrasonic strain imaging based on a linear scanning system,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr., 62, No. 2, 392-400 (2015).

    Article  Google Scholar 

  9. Leonov, D. V., Kulberg, N. S., Gromov, A. I., Morozov, S. P., and Kim, S. Yu., “Causes of ultrasound Doppler twinkling artifact,” Acoustical Physics, 64, No. 1, 105-114 (2018).

    Article  Google Scholar 

  10. Seibert, J. A., “One hundred years of medical diagnostic imaging technology,” Health Physics, 69, No. 5, 695-720 (1995).

    Article  Google Scholar 

  11. White, D. N., “Neurosonology pioneers,” Ultras. Med. Biol., 14, No. 7, 541-561 (1988).

    Article  Google Scholar 

  12. Goldberg, B. B., Gramiak, R., and Freimanis, A. K., “Early history of diagnostic ultrasound: The role of American radiologists,” Am. J. Roentgenol., 160, No. 1, 189-194 (1993).

    Article  Google Scholar 

  13. Silverman, R. H., “Focused ultrasound in ophthalmology,” Clin. Ophthalmol., 10, 1865-1875 (2016).

    Article  Google Scholar 

  14. Huang, Q. and Zeng, Z., “A review on real-time 3D ultrasound imaging technology,” BioMed Res. Internat., 2017, 1-20 (2017).

    Google Scholar 

  15. Roh, Y., “Ultrasonic transducers for medical volumetric imaging,” Jap. J. Appl. Phys., 53, No. 07KA01, 1-6 (2014).

    Google Scholar 

  16. Roh, Y., “Ultrasonic transducers for medical volumetric imaging,” Proc. Symp. Ultrason. Electron., 34, 411-412 (2013).

    Google Scholar 

  17. Fenster, A., Parraga, G., and Bax, J., “Three-dimensional ultrasound scanning,” Interface Focus, 4, 503-519 (2011).

    Article  Google Scholar 

  18. Genovese, M., “Ultrasound transducers,” J. Diagn. Med. Sonog., 32, 48-53 (2016).

    Article  Google Scholar 

  19. Pfister, K., Schierling, W., Jung, E. M., Apfelbeck, H., Hennersperger, C., and Kasprzak, P. M., “Standardized 2D ultrasound versus 3D/4D ultrasound and image fusion for measurement of aortic aneurysm diameter in follow-up after EVAR,” Clin. Hemorheol. Microcirc., 62, No. 3, 249-260 (2016).

    Article  Google Scholar 

  20. Woźniak, M. M., Wieczorek, A. P., Pawelec, A., et al., “Two-dimensional, three-dimensional static and real-time contrast enhanced voiding urosonography versus voiding cystourethrography in children with vesicoureteral reflux,” Eur. J. Radiol, 85, No. 6, 1238-1245 (2016).

    Article  Google Scholar 

  21. Marinetto, E., Uneri, A., de Silva, T., Reaungamornrat, S., Zbijewski, W., Sisniega, A., Vogt, S., Kleinszig, G., Pascau, J., and Siewerdsen, J. H., “Integration of free-hand 3D ultrasound and mobile C-arm cone-beam CT: Feasibility and characterization for real-time guidance of needle insertion,” Comp. Med. Imag. Graphics, 58, 13-22 (2017).

  22. Pedrosa, J., Barbosa, D., Almeida, N., Bernard, O., Bosch, J., and D’hooge J., “Cardiac chamber volumetric assessment using 3D ultrasound – A review,” Curr. Pharmaceut. Design, 22, No. 1, 105-121 (2016).

    Article  Google Scholar 

  23. Andreoni, G., Mazzola, M., Matteoli, S., D’Onofrio, S. D., and Forzoni, L., “Ultrasound system typologies, user interfaces and probes design: A review,” Proc. Manufact., 3, 112-119 (2015).

    Article  Google Scholar 

  24. Gao, H., Huang, Q., Xu, X., and Li, X., “Wireless and sensorless 3D ultrasound imaging,” Neurocomputing, 195, 159-171 (2016).

    Article  Google Scholar 

  25. Orandrou, S. V., Roy, J. C., Bailly, Y., Poncet, E., Girardot, L., and Ramel, D., “Determination of the heat transfer coefficients for the combined natural and streaming convection on an ultrasonic transducer,” Int. J. Heat Mass Transf., 62, 402-410 (2013).

    Article  Google Scholar 

  26. Grga, I. and Jarnjak, F., “Advanced UT techniques,” CrSNDT J., 3, No. 3, 24-31 (2013).

    Google Scholar 

  27. Invitation for Commercialization of DRDC’s Real Time 3D(4D) Ultrasound Imaging Digital Technology, Public Works and Government Services. Canada, 2017. Tender W7719-185404/A.

  28. Santos, P., Haugen, G. U., Lovstakken, L., Samset, E., and D’hooge, J., “Diverging wave volumetric imaging using subaperture beamforming,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr., 63, No. 12, 2114-2124 (2016).

    Article  Google Scholar 

  29. Santos, P., Lovstakken, L., Samset, E., and D’hooge, J., “Volumetric imaging of fast mechanical waves in the heart using a clinical ultrasound system, IEEE Internat. Ultrason. Symp. (2017), pp. 1-5.

  30. Zhang, D. Advanced Mechatronics and MEMS Devices, Springer, New York (2013).

    Book  Google Scholar 

  31. Zhang, D. and Wei, B., Advanced Mechatronics and MEMS Devices II, Springer, New York (2017).

    Book  Google Scholar 

  32. Tsai, J. M. L. and Daneman, M., “Integrated piezoelectric micro-electromechanical ultrasound transducer (PMUT) on integrated circuit (IC) for fingerprint sensing,” US14829404 (2014).

  33. Chen, A. I. H., Wong, L. P., Na, S., Li, Z., Macecek, M., and Yeow, J. T. W., “Fabrication of a curved row-column addressed capacitive micromachined ultrasonic transducer array,” MEMS J., 25, 675-682 (2016).

    Article  Google Scholar 

  34. Lu, Y., Heidari, A., Shelton, S., Guedes, A., and Horsley, D. A., “High frequency piezoelectric micromachined ultrasonic transducer array for intravascular ultrasound imaging,” IEEE 27th International Conference on MEMS, 745-748 (2014).

  35. Choi, A., McPherson, D. D., and Kim, H., “Visualization of plaque distribution in a curved artery: Three-dimensional intravascular ultrasound imaging,” Comp. Assist. Surg., 22, 120-126 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Leonov.

Additional information

Translated from Meditsinskaya Tekhnika, Vol. 52, No. 3, May-Jun., 2018, pp. 39-43.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osipov, L.V., Kulberg, N.S., Leonov, D.V. et al. 3D Ultrasound: Current State, Emerging Trends and Technologies. Biomed Eng 52, 199–203 (2018). https://doi.org/10.1007/s10527-018-9813-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10527-018-9813-0

Navigation