Skip to main content
Log in

Two-Millimeter Radiation from Stratospheric Nuclear Explosions

  • Published:
Atomic Energy Aims and scope

The dependence of the spectral power of radiation in the transmission window of air near wavelength 2 mm on the altitude of stratospheric nuclear explosions is investigated. One of the rotational transition lines of nitrogen oxide NO is studied. Calculations of the time dependence of the nitrogen oxide concentration were performed by the method of mathematical modeling of plasma. It is shown that a large amount of nitrogen oxide is formed by explosion γ-rays in the partial-ionization region ahead of the shock wave front; the nitrogen oxide concentration reaches a quasistationary level and remains almost constant for hundreds of microseconds. The quasistationariness is maintained by secondary γ-rays arising in inelastic scattering of explosion neutrons. Estimates of the spectral power of radiation near wavelength 2 mm are obtained. It is shown that at altitude 45 km above the ground the spectral power of the radiation is 105 times greater than for ground-level explosions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Mozgov and V. F. Fedorov, “Space detection of coherent microwave radiation from powerful atmospheric explosions,” Elektromagn. Volny Elektron. Sist., 22, No. 1, 4–9 (2017).

    Google Scholar 

  2. V. F. Fedorov, K. S. Mozgov, and Yu. V. Puzanov, “Electrical dipole radiation from atmospheric explosions,” Elektromagn. Volny Elektron. Sist., No. 3, 24–27 (2016).

  3. Yu. B. Kotov, T. A. Semenova, and V. F. Fedorov, “Microwave pulse from stratospheric explosion,” At. Energ., 105, No. 3, 156–160 (2008).

    Google Scholar 

  4. Yu. B. Kotov, T. A. Semenova, and V. F. Fedorov, “Microwave radiation due to severe accidents at nuclear power plants,” At. Energ., 118, No. 4, 156–160 (2015).

    Article  Google Scholar 

  5. Yu. B. Kotov, T. A. Semenova, and V. F. Fedorov, “Microwave method of identifying explosions,” At. Energ., 121, No. 3, 174–179 (2016).

    Google Scholar 

  6. V. F. Kotov, Yu. B. Kotov, K. S. Mozgov, and T. A. Semenova, Microwave Radiation from a Nuclear Explosion, Knizhnyi Dom LIBROKOM, Moscow (2013).

    Google Scholar 

  7. Ya. B. Zel’dovich and Yu. N. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Nauka, Moscow (1966).

    Google Scholar 

  8. M. F. Ivanov, A. D. Kiverin, B. A. Klumov, and V. E. Fortov, “From combustion and detonation to nitrogen oxides,” Usp. Fiz. Nauk, 184, No. 3, 247–264 (2014).

    Article  Google Scholar 

  9. Yu. B. Kotov, V. D. Popov, T. A. Semenova, and V. F. Fedorov, “Millimeter radiation in the spectral lines from powerful waves explosion,” Fiz. Plazmy, 38, No. 1, 73–77 (2012).

    Google Scholar 

  10. Y. A. Medvedev and E. V. Metelkin, “Electromagnetic fields excited by neutrons in air,” Prikl. Matem. Tekh. Fiz., No. 6, 38–40 (1979).

  11. A. I. Isakov, M. V. Kazarnovskii, Yu. A. Medvedev, et al., Nonstationary Moderation Neutrons. Basic Properties and Applications, Nauka, Moscow (1984).

    Google Scholar 

  12. GOST 4401-81, Standard Atmosphere. Parameters, Izd. Standartov, Moscow (1981).

  13. D. Bond, K. Watson, and D. Welch, Physical Theory of Gas Dynamics [Russian translation], Mir, Moscow (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Atomnaya Énergiya, Vol. 123, No. 4, pp. 234–237, October, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotov, Y.B., Semenova, T.A. & Fedorov, V.F. Two-Millimeter Radiation from Stratospheric Nuclear Explosions. At Energy 123, 285–289 (2018). https://doi.org/10.1007/s10512-018-0340-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10512-018-0340-6

Navigation