Skip to main content
Log in

Effect of Fission Products and Oxygen and Carbon Impurities in (U, Pu)N on the Heat-and-Mass Transfer Coefficients and Xenon Yield

  • Published:
Atomic Energy Aims and scope

Irradiation of uranium-plutonium mononitride by fast neutrons results in the formation and accumulation of fission products, which, for example, lanthanides, zirconium, and yttrium, dissolve in the fuel solid solution, changing its chemical composition and stoichiometry, or precipitate in the form of individual condensed phases, changing the phase composition of the fuel. These phase inclusions are formed inside and on the boundaries of fuel grains, changing the coefficients of heat-and-mass transfer. A change in the effective coefficient of heat-and-mass transfer results in a transformation of the temperature field in a fuel element, which means that the temperature part of the diffusion coefficient changes. The diffusion coefficient in solid phase inclusions is different from the diffusion coefficient in the fuel matrix, as a result of which the effective diffusion coefficient changes. A model of the yield of stable, radioactive, inert gases from uraniumplutonium mononitride fuel is presented and used to calculate the xenon yield taking account of the changes in the coefficients of heat-and-mass transfer and diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. M. Troyanov, A. F. Grachev, L. M. Zabud’ko, et al., “Prospects for using nitride fuel in fast reactors with a closed fuel cycle,” At. Énerg., 117, No. 2, 69–74 (2014).

    Article  Google Scholar 

  2. Feng Bo, Aydin Karahan, and S. Mujid Kazimi, “Steady-state fuel behaviour modeling of nitride fuels in FRAPCONEP,” J. Nucl. Mater., 427, 30–38 (2012).

    Article  ADS  Google Scholar 

  3. Yu. G. Degal’tsev, N. N. Ponomarev-Stepnoi, and V. F. Kuznetsov, Behavior of High-Temperature Nuclear Fuel under Irradiation, Energoatomizdat, Moscow (1987).

    Google Scholar 

  4. D. Yu. Lyubimov, A. V. Androsov, G. S. Bulatov, et al., “Thermodynamic modeling of the phase composition of mixed uranium-plutonium mononitride under irradiation by fast neutrons to burnup 80 GW·days/ton and temperature 900–1400 K,” At. Énerg., 114, No. 4, 198–202 (2013).

    Article  Google Scholar 

  5. Y. Arai, A. Maeda, K. Shiozawa, et al., “Chemical forms of solid fission products in the irradiated uranium-plutonium mixed nitride fuel,” J. Nucl. Mater., 210, 161–166 (1994).

    Article  ADS  Google Scholar 

  6. B. D. Rogozkin, N. M. Stepennova, Yu. E. Fedorov, et al., “Results of tests of mixed mononitride fuel U0.55Pu0.45N and U0.4Pu0.6N in BOR-60 reactor to burnup 12% h.a.,” At. Énerg., 110, No. 6, 332–346 (2011).

    Article  Google Scholar 

  7. D. Yu. Lyubimov, A. V. Androsov, G. S. Bulatov, et al., “Thermodynamic modeling of dissolution of oxygen in uranium mononitride at temperature 900–1400 K,” Radiokhimiya, 56, No. 5, 423–426 (2014).

    Google Scholar 

  8. D. Sood, R. Agarwal, and V. Venugopal, “Phase diagram calculations of the U–Pu–N system with carbon and oxygen impurities,” J. Nucl. Mater., 247, 293–300 (1997).

    Article  ADS  Google Scholar 

  9. I. A. Deryabin, D. Yu. Lyubimov, G. S. Bulatov, and K. N. Gedgovd, “Thermodynamic modeling of the phase composition of mixed uranium-plutonium mononitride, containing oxygen impurity, under irradiation by fast neutrons to burnup 140 GW·days/ton and temperature 900–1400 K,” At. Énerg., 118, No. 1, 24–29 (2015).

    Google Scholar 

  10. B. G. Trusov, Thermodynamic Method of Analysis of High-Temperature States and Processes and Its Practical Implementation: Dissert. Doct. Techn. Sci., MGTU im. Baumana, Moscow (1984).

    Google Scholar 

  11. R. B. Kotel’nikov, S. N. Bashlykov, A. N. Kashtanov, et al., High-Temperature Nuclear Fuel, Atomizdat, Moscow (1978), 2nd ed.

    Google Scholar 

  12. V. I. Odelevskii, “Calculation of generalized conductivity of heterogeneous systems,” Zh. Tekh. Fiz., 21, No. 6, 667–685 (1951).

    Google Scholar 

  13. Y. Arai, M. Morihira, and T. Ohmichi, “The effect of oxygen impurity on the characteristics of uranium and uranium-plutonium mixed nitride fuels,” J. Nucl. Mater., 202, 70–78 (1993).

    Article  ADS  Google Scholar 

  14. P. Losonen, “Modelling intragranular fission gas release in irradiation of sintered LWR UO2 fuel,” J. Nucl. Mater., 304, 29–49 (2002).

    Article  ADS  Google Scholar 

  15. J. Turnbull, C. Friskney, et al., “The diffusion coefficients of gaseous and volatile species during the irradiation of uranium dioxide,” J. Nucl. Mater., 107, 168–184 (1982).

    Article  ADS  Google Scholar 

  16. K. Heemoon, P. Kwangheon, W. Jae, et al., “Diffusivity of Xe-133 in irradiated uranium nitride with a low burnup,” Trans. Korean Nucl. Soc. Autumn Meeting, Pyeong Chang, Korea, Oct. 30–31, 2008, pp. 335–336.

  17. D. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements, TID-26711-P1, University of California, Berkeley (1976).

    Google Scholar 

  18. C. Ronchi, “Fission gas swelling in advanced fuels,” J. Europ. Sci. Technol., 1, No. 1, 45–59 (1979).

    Google Scholar 

  19. K. Yang-Hyun, L. Byung-Ho, and S. Dong-Seong, “Analysis of fission gas release and gaseous swelling in UO2 fuel under the effect of external restraint,” J. Nucl. Mater., 280, 86–98 (2000).

    Article  ADS  Google Scholar 

  20. R. Matthews, K. Chidester, C. Hoth, et al., “Fabrication and testing of uranium nitride fuel for space power reactors,” J. Nucl. Mater., 151, 334–344 (1988).

    Article  Google Scholar 

  21. K. Tanaka, K. Maeda, K. Katsuyama, et al., “Fission gas release and swelling in uranium-plutonium mixed nitride fuels,” J. Nucl. Mater., 327, 77–87 (2004).

    Article  ADS  Google Scholar 

  22. T. Iwai, K. Nakajima, Y. Arai, et al., Fission Gas Release of Uranium-Plutonium Mixed Nitride and Carbide Fuels, IAEA, Vienna (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Atomnaya Énergiya, Vol. 121, No. 2, pp. 75–82, August, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deryabin, I.A., Kharitonov, V.S. & Lyubimov, D.Y. Effect of Fission Products and Oxygen and Carbon Impurities in (U, Pu)N on the Heat-and-Mass Transfer Coefficients and Xenon Yield. At Energy 121, 96–105 (2016). https://doi.org/10.1007/s10512-016-0168-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10512-016-0168-x

Navigation