Skip to main content
Log in

Study of the Rapid Variability of the BL Lac Object MRK 421 in the Optical Range

  • Published:
Astrophysics Aims and scope

MRK 421 is a giant elliptical galaxy in the Ursa Major constellation whose core has all the properties of a BL Lac object. It manifests a high activity and variability from the radio to gamma-ray ranges on time scales from a few hours to more than 10 years. MRK 421 has a large companion— a spiral, probably, also active galaxy (MRK 421-5). This paper presents the results of an analysis of observations (in the V, R, and I bands) as part of a joint Latvian-Ukrainian project for study of the variability of bright AGN. In addition, the light curves of MRK 421 from the AAVSO data base (American Association of Variable Star Observers) are analyzed to confirm the results of periodogram analysis. Ultimately, over the time interval studied here, MRK 421 is suspected of having a cyclical variability with a characteristic time in the range of 9.3-13.4 days determined by two different methods (approximation of the data by sinusoids and the CLEANest method), which is confirmed by an analysis of longer observations of MRK 421 in the V band (with AAVSO data). The longer variability of MRK 421 was also analyzed. It was found that in the V, R, and I light curves from AAVSO the maxima of the LS-periodograms correspond to periods of 1.6-1.7 years. This is close to earlier results from an analysis of historical light curves of MRK 421 obtained by other authors. The AAVSO data also indicate the presence in MRK 421 of a longer cycle of brightness variation with a characteristic time of 20-30 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Sbarufatti, A. Treves, and R. Falomo, Astrophys. J. 635, 173 (2005).

    Article  ADS  Google Scholar 

  2. M. Punch, C. W. Akerlof, M. F. Cawley, et al., Nature 358, 477 (1992).

    Article  ADS  Google Scholar 

  3. J. A. Gaidos, C. W. Akerlof, S. Biller, et al., Nature 383, 319 (1996).

    Article  ADS  Google Scholar 

  4. A. Sillanpää and L. O. Takalo, Webt Collaboration, Proceedings of the 27th International Cosmic Ray Conference, Hamburg, Germany, August 07-15 (2001).

  5. Chen Xu, Hu Shao Ming, Guo Di Fu, et al., Astrophys. Space Sci. 349, 909 (2014).

  6. Zhongli Zhang, Alok C. Gupta, Haritma Gaur, et al., Astrophys. J. 884, 125 (2019).

    Article  ADS  Google Scholar 

  7. V. S. Paliya, M. Böttcher, C. Diltz, et al., Astrophys. J. 811, 143 (2015).

    Article  ADS  Google Scholar 

  8. X. Liu, M. Q. Lin, J. Liu, et al., The Astronomer’s Telegram, 5021 (2013).

  9. A. Arbet-Engels, D. Baack, M. Balbo, et al., Astron. Astrophys. 647, A88 (2021).

    Article  Google Scholar 

  10. A. C. Gupta, D. P. K. Banerjee, N. M. Ashok, et al., Astron. Astrophys. 422, 505 (2004).

    Article  ADS  Google Scholar 

  11. A. L. Sukharev, M. I. Ryabov, and V. V. Bezrukovs, Radio Physics and Radio Astronomy, 24, 254 (2019).

    Article  Google Scholar 

  12. A. Sukharev, M. Ryabov, V. Bezrukovs, et al., Astrophysics 63, 32 (2020).

    Article  ADS  Google Scholar 

  13. A. Sukharev, M. Ryabov, V. Bezrukovs, et al., Galaxies 8, 69 (2020).

    Article  ADS  Google Scholar 

  14. P. J. Benson, International Amateur-Professional Photoelectric Photometry Communication, 72, 42 (1998).

    ADS  Google Scholar 

  15. D. Boyd, JAAVSO 40, 990 (2012).

    ADS  Google Scholar 

  16. S. N. Udovichenko, Odessa Astron. Publ. 25, 32 (2012).

    ADS  Google Scholar 

  17. I. Kudzej, V. E. Savanevych, O. B. Briukhovetskyi, et al., Astron. Nachr. 340, 68 (2019).

    Article  ADS  Google Scholar 

  18. B. A. Skiff, VizieR Online Data Catalog, II/277 (2007).

  19. K. M. Transtrum and J. P. Sethna (2012), arXiv:1201.5885v1.

  20. E. Ostertagova and O. Ostertag, Global Journal of Pure and Applied Mathematics 12, 3201 (2016).

    Google Scholar 

  21. G. Foster, Astron. J. 109, 1889 (1995).

    Article  ADS  Google Scholar 

  22. A. Schwarzenberg-Czerny, Astrophys. J. Lett. 460, L107 (1996).

    Article  ADS  Google Scholar 

  23. H. Z. Li, Y. G. Jiang, D. F. Guo, et al., Publ. Astron. Soc. Pacif. 128, 074101 (2016).

  24. A. Mangalam and P. J. Wiita, Astrophys. J. 406, 420 (1993).

    Article  ADS  Google Scholar 

  25. S. Kato and J. Fukue, Publ. Astron. Soc. Jpn. 32, 377 (1980).

    Article  ADS  Google Scholar 

  26. A. B. Kovaèeviæ, L. È. Popoviæ, S. Simiæ, et al., Astrophys. J. 871, 32 (2019).

    Article  ADS  Google Scholar 

  27. N. Fraija, E. Benítez, D. Hiriart, et al., Astrophys. J. Suppl. Ser. 232, 7 (2017).

    Article  ADS  Google Scholar 

  28. R. Chatterjee, A. Roychowdhury, S. Chandra, et al., Astrophys. J. Lett. 859, L21 (2018).

    Article  ADS  Google Scholar 

  29. G. Foster, Astron. J. 112, 1709 (1996).

    Article  ADS  Google Scholar 

  30. V. A. Acciari, S. Ansoldi, L. A. Antonelli, et al., Mon. Not. Roy. Astron. Soc. 504, 1427 (2021).

    ADS  Google Scholar 

  31. P. W. Gorham, L. van Zee, S. C. Unwin, et al., Astron. J. 119, 1677 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sukharev.

Additional information

Translated from Astrofizika, Vol. 65, No. 1, pp. 5-25 (February 2022)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukharev, A., Ryabov, M., Bezrukovs, V. et al. Study of the Rapid Variability of the BL Lac Object MRK 421 in the Optical Range. Astrophysics 65, 1–18 (2022). https://doi.org/10.1007/s10511-022-09718-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-022-09718-2

Keywords

Navigation