Skip to main content
Log in

The fate of particles in the dynamical environment around Kuiper-Belt object (486958) Arrokoth

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The contact binary Kuiper-Belt object (486958) Arrokoth, targeted by the New Horizons mission, has a unique slope pattern, which is a result of its irregular bilobate surface shape and high spin period. Thus, some peculiar topographic regions on its surface are predisposed to lose or accumulate material, as a long circular depression feature, an impact crater called Maryland, on its small lobe. The equilibrium points of Arrokoth are also directly related to the structure of the environment near these surface features. In this work, we performed numerical simulations around Arrokoth to explore the fate of particles close to equilibrium points and their dynamical connection with its surface features. Our results suggest that most of these particles in a ring inside Arrokoth’s rotational Roche lobe fall near the equatorial region of the Maryland impact crater or close to the Bright spots area on the large lobe. Also, particles in a spherical cloud orbiting Arrokoth accumulate preferentially near low–midlatitude regions close to the longitudes of the Maryland crater and the Bright spots area. In contrast, a few particles will fall in regions diametrically opposite to them, as in the LL_Term boundary on the large lobe. High latitudes are those more empty of impacts, as in polar sites. In addition, particles larger than a couple of micrometers are not significantly perturbed by solar radiation pressure in the environment around Arrokoth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The data underlying this manuscript will be shared upon reasonable request to the corresponding author.

Code Availability

Simulation codes used to generate the results are available online at https://github.com/a-amarante.

Notes

  1. The polyhedral data for Arrokoth is from the Science Supplementary Materials website: https://science.sciencemag.org/content/suppl/2020/02/12/science.aay3705.DC1.

  2. The GNUPlot program (Williams et al. 2011) is used to build the polyhedral mesh of this figure.

  3. CODATA - http://physics.nist.gov/constants.

  4. https://github.com/a-amarante/minor-gravity.

  5. https://github.com/a-amarante/minor-equilibria-nr.

  6. https://github.com/a-amarante/minor-mercury.

  7. https://github.com/a-amarante/hnm-ring.

  8. https://github.com/a-amarante/minor-mercury.

References

  • Amarante, A.: HNM-Ring. https://doi.org/10.5281/zenodo.4043488. The source codes of this package are available on reasonable request

  • Amarante, A.: Minor-Equilibria-NR. https://doi.org/10.5281/zenodo.4043461. The source codes of this package are available on reasonable request

  • Amarante, A.: Minor-Gravity. https://doi.org/10.5281/zenodo.4043553. The source codes of this package are available on reasonable request

  • Amarante, A.: Minor-Mercury. https://doi.org/10.5281/zenodo.4043760. The source codes of this package are available on reasonable request

  • Amarante, A., Winter, O.C.: Mon. Not. R. Astron. Soc. 496(4), 4154 (2020). https://doi.org/10.1093/mnras/staa1732. 2006.07823

    Article  ADS  Google Scholar 

  • Amarante, A., Winter, O.C., Sfair, R.: J. Geophys. Res., Planets 126(1), 2019 (2021). https://doi.org/10.1029/2019JE006272. e2019JE006272 2019JE006272. https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2019JE006272

    Article  Google Scholar 

  • Braga-Ribas, F., Sicardy, B., Ortiz, J.L., Snodgrass, C., Roques, F., Vieira-Martins, R., Camargo, J.I.B., Assafin, M., Duffard, R., Jehin, E., Pollock, J., Leiva, R., Emilio, M., Machado, D.I., Colazo, C., Lellouch, E., Skottfelt, J., Gillon, M., Ligier, N., Maquet, L., Benedetti-Rossi, G., Gomes, A.R., Kervella, P., Monteiro, H., Sfair, R., El Moutamid, M., Tancredi, G., Spagnotto, J., Maury, A., Morales, N., Gil-Hutton, R., Roland, S., Ceretta, A., Gu, S.-H., Wang, X.-B., Harpsøe, K., Rabus, M., Manfroid, J., Opitom, C., Vanzi, L., Mehret, L., Lorenzini, L., Schneiter, E.M., Melia, R., Lecacheux, J., Colas, F., Vachier, F., Widemann, T., Almenares, L., Sandness, R.G., Char, F., Perez, V., Lemos, P., Martinez, N., Jørgensen, U.G., Dominik, M., Roig, F., Reichart, D.E., Lacluyze, A.P., Haislip, J.B., Ivarsen, K.M., Moore, J.P., Frank, N.R., Lambas, D.G.: Nature 508(7494), 72 (2014). https://doi.org/10.1038/nature13155. 1409.7259

    Article  ADS  Google Scholar 

  • Burns, J.A., Lamy, P.L., Soter, S.: Icarus 40(1), 1 (1979). https://doi.org/10.1016/0019-1035(79)90050-2

    Article  ADS  Google Scholar 

  • Chambers, J.E.: Mon. Not. R. Astron. Soc. 304, 793 (1999). https://doi.org/10.1046/j.1365-8711.1999.02379.x

    Article  ADS  Google Scholar 

  • Dobrovolskis, A.R.: Icarus 124, 698 (1996). https://doi.org/10.1006/icar.1996.0243

    Article  ADS  Google Scholar 

  • Geissler, P., Petit, J.-M., Durda, D.D., Greenberg, R., Bottke, W., Nolan, M., Moore, J.: Icarus 120, 140 (1996). https://doi.org/10.1006/icar.1996.0042

    Article  ADS  Google Scholar 

  • Greenstreet, S., Gladman, B., McKinnon, W.B., Kavelaars, J.J., Singer, K.N.: Astrophys. J. 872(1), 5 (2019). https://doi.org/10.3847/2041-8213/ab01db

    Article  Google Scholar 

  • Grundy, W.M., Bird, M.K., Britt, D.T., Cook, J.C., Cruikshank, D.P., Howett, C.J.A., Krijt, S., Linscott, I.R., Olkin, C.B., Parker, A.H., Protopapa, S., Ruaud, M., Umurhan, O.M., Young, L.A., Dalle Ore, C.M., Kavelaars, J.J., Keane, J.T., Pendleton, Y.J., Porter, S.B., Scipioni, F., Spencer, J.R., Stern, S.A., Verbiscer, A.J., Weaver, H.A., Binzel, R.P., Buie, M.W., Buratti, B.J., Cheng, A., Earle, A.M., Elliott, H.A., Gabasova, L., Gladstone, G.R., Hill, M.E., Horanyi, M., Jennings, D.E., Lunsford, A.W., McComas, D.J., McKinnon, W.B., McNutt, R.L., Moore, J.M., Parker, J.W., Quirico, E., Reuter, D.C., Schenk, P.M., Schmitt, B., Showalter, M.R., Singer, K.N., Weigle, G.E., Zangari, A.M.: Science (2020). https://doi.org/10.1126/science.aay3705. https://science.sciencemag.org/content/early/2020/02/12/science.aay3705.full.pdf

    Article  Google Scholar 

  • Hamilton, D.P., Burns, J.A.: Icarus 92(1), 118 (1991). https://doi.org/10.1016/0019-1035(91)90039-V

    Article  ADS  Google Scholar 

  • Horanyi, M.: In: Rettig, T., Hahn, J.M. (eds.) Completing the Inventory of the Solar System. Astronomical Society of the Pacific Conference Series, vol. 107, p. 129 (1996)

    Google Scholar 

  • Lauretta, D.S., Hergenrother, C.W., Chesley, S.R., Leonard, J.M., Pelgrift, J.Y., Adam, C.D., Al Asad, M., Antreasian, P.G., Ballouz, R.-L., Becker, K.J., Bennett, C.A., Bos, B.J., Bottke, W.F., Brozović, M., Campins, H., Connolly, H.C., Daly, M.G., Davis, A.B., de León, J., DellaGiustina, D.N., Drouet d’Aubigny, C.Y., Dworkin, J.P., Emery, J.P., Farnocchia, D., Glavin, D.P., Golish, D.R., Hartzell, C.M., Jacobson, R.A., Jawin, E.R., Jenniskens, P., Kidd, J.N., Lessac-Chenen, E.J., Li, J.-Y., Libourel, G., Licandro, J., Liounis, A.J., Maleszewski, C.K., Manzoni, C., May, B., McCarthy, L.K., McMahon, J.W., Michel, P., Molaro, J.L., Moreau, M.C., Nelson, D.S., Owen, W.M., Rizk, B., Roper, H.L., Rozitis, B., Sahr, E.M., Scheeres, D.J., Seabrook, J.A., Selznick, S.H., Takahashi, Y., Thuillet, F., Tricarico, P., Vokrouhlický, D., Wolner, C.W.V.: Science 366(6470), 1192 (2019). https://doi.org/10.1126/science.aay3544. https://science.sciencemag.org/content/366/6470/eaay3544.full.pdf

    Article  Google Scholar 

  • Lyra, W., Youdin, A.N., Johansen, A.: Icarus, 356, 113831 (2020). https://doi.org/10.1016/j.icarus.2020.113831

    Article  Google Scholar 

  • Mao, X., McKinnon, W., Singer, K., Keane, J., Robbins, S., Schenk, P., Moore, J., Stern, A., Weaver, H., Spencer, J., Olkin, C.: In: Europlanet Science Congress, vol. 14 2020. https://doi.org/10.5194/epsc2020-553

    Chapter  Google Scholar 

  • Mignard, F.: Effects of radiation forces on dust particles in planetary rings, p. 333 (1984)

  • Mignard, F.: Icarus 49(3), 347 (1982). https://doi.org/10.1016/0019-1035(82)90041-0

    Article  ADS  Google Scholar 

  • Moura, T.S., Winter, O.C., Amarante, A., Sfair, R., Borderes-Motta, G., Valvano, G.: Mon. Not. R. Astron. Soc. 491(3), 3120 (2020). https://doi.org/10.1093/mnras/stz3210. 2003.10310

    Article  ADS  Google Scholar 

  • Ortiz, J.L., Santos-Sanz, P., Sicardy, B., Benedetti-Rossi, G., Bérard, D., Morales, N., Duffard, R., Braga-Ribas, F., Hopp, U., Ries, C., Nascimbeni, V., Marzari, F., Granata, V., Pál, A., Kiss, C., Pribulla, T., Komžík, R., Hornoch, K., Pravec, P., Bacci, P., Maestripieri, M., Nerli, L., Mazzei, L., Bachini, M., Martinelli, F., Succi, G., Ciabattari, F., Mikuz, H., Carbognani, A., Gaehrken, B., Mottola, S., Hellmich, S., Rommel, F.L., Fernández-Valenzuela, E., Campo Bagatin, A., Cikota, S., Cikota, A., Lecacheux, J., Vieira-Martins, R., Camargo, J.I.B., Assafin, M., Colas, F., Behrend, R., Desmars, J., Meza, E., Alvarez-Candal, A., Beisker, W., Gomes-Junior, A.R., Morgado, B.E., Roques, F., Vachier, F., Berthier, J., Mueller, T.G., Madiedo, J.M., Unsalan, O., Sonbas, E., Karaman, N., Erece, O., Koseoglu, D.T., Ozisik, T., Kalkan, S., Guney, Y., Niaei, M.S., Satir, O., Yesilyaprak, C., Puskullu, C., Kabas, A., Demircan, O., Alikakos, J., Charmandaris, V., Leto, G., Ohlert, J., Christille, J.M., Szakáts, R., Takácsné Farkas, A., Varga-Verebélyi, E., Marton, G., Marciniak, A., Bartczak, P., Santana-Ros, T., Butkiewicz-Bkak, M., Dudziński, G., Alí-Lagoa, V., Gazeas, K., Tzouganatos, L., Paschalis, N., Tsamis, V., Sánchez-Lavega, A., Pérez-Hoyos, S., Hueso, R., Guirado, J.C., Peris, V., Iglesias-Marzoa, R.: Nature 550(7675), 219 (2017). https://doi.org/10.1038/nature24051. 2006.03113

    Article  ADS  Google Scholar 

  • Park, R.S., Werner, R.A., Bhaskaran, S.: J. Guid. Control Dyn. 33, 212 (2010). https://doi.org/10.2514/1.41585

    Article  ADS  Google Scholar 

  • Pires dos Santos, P.M., Giuliatti Winter, S.M., Sfair, R., Mourão, D.C.: Mon. Not. R. Astron. Soc. 430(4), 2761 (2013). https://doi.org/10.1093/mnras/stt076. https://academic.oup.com/mnras/article-pdf/430/4/2761/3836972/stt076.pdf

    Article  ADS  Google Scholar 

  • Porter, S.B., Buie, M.W., Parker, A.H., Spencer, J.R., Benecchi, S., Tanga, P., Verbiscer, A., Kavelaars, J.J., Gwyn, S.D.J., Young, E.F., Weaver, H.A., Olkin, C.B., Parker, J.W., Stern, S.A.: Astron. J. 156, 20 (2018). https://doi.org/10.3847/1538-3881/aac2e1. 1805.02252

    Article  ADS  Google Scholar 

  • Rollin, G., Shevchenko, I.I., Lages, J.: Icarus 357, 114178 (2020). https://doi.org/10.1016/j.icarus.2020.114178

    Article  Google Scholar 

  • Roth, S.D.: Comput. Graph. Image Process. 18(2), 109 (1982). https://doi.org/10.1016/0146-664X(82)90169-1

    Article  Google Scholar 

  • Scheeres, D.J., Marzari, F., Tomasella, L., Vanzani, V.: Planet. Space Sci. 46, 649 (1998). https://doi.org/10.1016/S0032-0633(97)00200-6

    Article  ADS  Google Scholar 

  • Scheeres, D.J., Hesar, S.G., Tardivel, S., Hirabayashi, M., Farnocchia, D., McMahon, J.W., Chesley, S.R., Barnouin, O., Binzel, R.P., Bottke, W.F., Daly, M.G., Emery, J.P., Hergenrother, C.W., Lauretta, D.S., Marshall, J.R., Michel, P., Nolan, M.C., Walsh, K.J.: Icarus 276, 116 (2016). https://doi.org/10.1016/j.icarus.2016.04.013

    Article  ADS  Google Scholar 

  • Scheeres, D.J., McMahon, J.W., French, A.S., Brack, D.N., Chesley, S.R., Farnocchia, D., Takahashi, Y., Leonard, J.M., Geeraert, J., Page, B., Antreasian, P., Getzandanner, K., Rowlands, D., Mazarico, E.M., Small, J., Highsmith, D.E., Moreau, M., Emery, J.P., Rozitis, B., Hirabayashi, M., Sánchez, P., van Wal, S., Tricarico, P., Ballouz, R.-L., Johnson, C.L., Al Asad, M.M., Susorney, H.C.M., Barnouin, O.S., Daly, M.G., Seabrook, J.A., Gaskell, R.W., Palmer, E.E., Weirich, J.R., Walsh, K.J., Jawin, E.R., Bierhaus, E.B., Michel, P., Bottke, W.F., Nolan, M.C., Connolly, H.C., Lauretta, D.S., Osiris-Rex Team: Nat. Astron. 3, 352 (2019). https://doi.org/10.1038/s41550-019-0721-3

    Article  ADS  Google Scholar 

  • Scheeres, D., Sanchez, P.: In: EPSC-DPS Joint Meeting 2019, vol. 2019, p. 2019 (2019)

    Google Scholar 

  • Singer, K.N., Spencer, J.R., McKinnon, W.B., Stern, A., Greenstreet, S., Gladman, B., Robbins, S.J., Runyon, K., Schenk, P., Kavelaars, J.J., Lauer, T., Parker, A.H., Weaver, J.H.A., Olkin, C., Moore, J., Parker, J.W., Verbiscer, A., Grundy, W.M.: In: AGU Fall Meeting Abstracts, vol. 2019, p. 33 (2019)

    Google Scholar 

  • Spencer, J.R., Stern, S.A., Moore, J.M., Weaver, H.A., Singer, K.N., Olkin, C.B., Verbiscer, A.J., McKinnon, W.B., Parker, J.W., Beyer, R.A., Keane, J.T., Lauer, T.R., Porter, S.B., White, O.L., Buratti, B.J., El-Maarry, M.R., Lisse, C.M., Parker, A.H., Throop, H.B., Robbins, S.J., Umurhan, O.M., Binzel, R.P., Britt, D.T., Buie, M.W., Cheng, A.F., Cruikshank, D.P., Elliott, H.A., Gladstone, G.R., Grundy, W.M., Hill, M.E., Horanyi, M., Jennings, D.E., Kavelaars, J.J., Linscott, I.R., McComas, D.J., McNutt, R.L., Protopapa, S., Reuter, D.C., Schenk, P.M., Showalter, M.R., Young, L.A., Zangari, A.M., Abedin, A.Y., Beddingfield, C.B., Benecchi, S.D., Bernardoni, E., Bierson, C.J., Borncamp, D., Bray, V.J., Chaikin, A.L., Dhingra, R.D., Fuentes, C., Fuse, T., Gay, P.L., Gwyn, S.D.J., Hamilton, D.P., Hofgartner, J.D., Holman, M.J., Howard, A.D., Howett, C.J.A., Karoji, H., Kaufmann, D.E., Kinczyk, M., May, B.H., Mountain, M., Pätzold, M., Petit, J.M., Piquette, M.R., Reid, I.N., Reitsema, H.J., Runyon, K.D., Sheppard, S.S., Stansberry, J.A., Stryk, T., Tanga, P., Tholen, D.J., Trilling, D.E., Wasserman, L.H.: Science (2020). https://doi.org/10.1126/science.aay3999. https://science.sciencemag.org/content/early/2020/02/12/science.aay3999.full.pdf

    Article  Google Scholar 

  • Stern, S.A., Weaver, H.A., Spencer, J.R., Olkin, C.B., Gladstone, G.R., Grundy, W.M., Moore, J.M., Cruikshank, D.P., Elliott, H.A., McKinnon, W.B., Parker, J.W., Verbiscer, A.J., Young, L.A., Aguilar, D.A., Albers, J.M., Andert, T., Andrews, J.P., Bagenal, F., Banks, M.E., Bauer, B.A., Bauman, J.A., Bechtold, K.E., Beddingfield, C.B., Behrooz, N., Beisser, K.B., Benecchi, S.D., Bernardoni, E., Beyer, R.A., Bhaskaran, S., Bierson, C.J., Binzel, R.P., Birath, E.M., Bird, M.K., Boone, D.R., Bowman, A.F., Bray, V.J., Britt, D.T., Brown, L.E., Buckley, M.R., Buie, M.W., Buratti, B.J., Burke, L.M., Bushman, S.S., Carcich, B., Chaikin, A.L., Chavez, C.L., Cheng, A.F., Colwell, E.J., Conard, S.J., Conner, M.P., Conrad, C.A., Cook, J.C., Cooper, S.B., Custodio, O.S., Dalle Ore, C.M., Deboy, C.C., Dharmavaram, P., Dhingra, R.D., Dunn, G.F., Earle, A.M., Egan, A.F., Eisig, J., El-Maarry, M.R., Engelbrecht, C., Enke, B.L., Ercol, C.J., Fattig, E.D., Ferrell, C.L., Finley, T.J., Firer, J., Fischetti, J., Folkner, W.M., Fosbury, M.N., Fountain, G.H., Freeze, J.M., Gabasova, L., Glaze, L.S., Green, J.L., Griffith, G.A., Guo, Y., Hahn, M., Hals, D.W., Hamilton, D.P., Hamilton, S.A., Hanley, J.J., Harch, A., Harmon, K.A., Hart, H.M., Hayes, J., Hersman, C.B., Hill, M.E., Hill, T.A., Hofgartner, J.D., Holdridge, M.E., Horányi, M., Hosadurga, A., Howard, A.D., Howett, C.J.A., Jaskulek, S.E., Jennings, D.E., Jensen, J.R., Jones, M.R., Kang, H.K., Katz, D.J., Kaufmann, D.E., Kavelaars, J.J., Keane, J.T., Keleher, G.P., Kinczyk, M., Kochte, M.C., Kollmann, P., Krimigis, S.M., Kruizinga, G.L., Kusnierkiewicz, D.Y., Lahr, M.S., Lauer, T.R., Lawrence, G.B., Lee, J.E., Lessac-Chenen, E.J., Linscott, I.R., Lisse, C.M., Lunsford, A.W., Mages, D.M., Mallder, V.A., Martin, N.P., May, B.H., McComas, D.J., McNutt, R.L., Mehoke, D.S., Mehoke, T.S., Nelson, D.S., Nguyen, H.D., Núñez, J.I., Ocampo, A.C., Owen, W.M., Oxton, G.K., Parker, A.H., Pätzold, M., Pelgrift, J.Y., Pelletier, F.J., Pineau, J.P., Piquette, M.R., Porter, S.B., Protopapa, S., Quirico, E., Redfern, J.A., Regiec, A.L., Reitsema, H.J., Reuter, D.C., Richardson, D.C., Riedel, J.E., Ritterbush, M.A., Robbins, S.J., Rodgers, D.J., Rogers, G.D., Rose, D.M., Rosendall, P.E., Runyon, K.D., Ryschkewitsch, M.G., Saina, M.M., Salinas, M.J., Schenk, P.M., Scherrer, J.R., Schlei, W.R., Schmitt, B., Schultz, D.J., Schurr, D.C., Scipioni, F., Sepan, R.L., Shelton, R.G., Showalter, M.R., Simon, M., Singer, K.N., Stahlheber, E.W., Stanbridge, D.R., Stansberry, J.A., Steffl, A.J., Strobel, D.F., Stothoff, M.M., Stryk, T., Stuart, J.R., Summers, M.E., Tapley, M.B., Taylor, A., Taylor, H.W., Tedford, R.M., Throop, H.B., Turner, L.S., Umurhan, O.M., Van Eck, J., Velez, D., Versteeg, M.H., Vincent, M.A., Webbert, R.W., Weidner, S.E., Weigle, G.E., Wendel, J.R., White, O.L., Whittenburg, K.E., Williams, B.G., Williams, K.E., Williams, S.P., Winters, H.L., Zangari, A.M., Zurbuchen, T.H.: Science 364(6441), eaaw9771 (2019). https://doi.org/10.1126/science.aaw9771. https://science.sciencemag.org/content/364/6441/eaaw9771.full.pdf

    Article  ADS  Google Scholar 

  • Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis (1980)

    Book  Google Scholar 

  • Tardivel, S., Scheeres, D.J., Michel, P.: In: 24th AAS/AIAA Space Flight Mechanics Meeting, p. 14. Univelt, Incorporated, San Diego (2014)

    Google Scholar 

  • Vasilkova, O.: Astron. Astrophys. 403, 413 (2003). https://doi.org/10.1051/0004-6361:20030399

    Article  ADS  Google Scholar 

  • Vieira Neto, E., Winter, O.C., Yokoyama,T.: Astron. Astrophys. 452(3), 1091 (2006). https://doi.org/10.1051/0004-6361:20041683

    Article  ADS  Google Scholar 

  • Werner, R.A., Scheeres, D.J.: Celest. Mech. Dyn. Astron. 65, 313 (1997)

    Article  ADS  Google Scholar 

  • Williams, T., Kelley, C., et al.: Gnuplot 4.4: an interactive plotting program (2011). http://gnuplot.sourceforge.net/

  • Winter, O.C., Valvano, G., Moura, T.S., Borderes-Motta, G., Amarante, A., Sfair, R.: Mon. Not. R. Astron. Soc. 492(3), 4437 (2020). https://doi.org/10.1093/mnras/staa097. 2003.11411

    Article  ADS  Google Scholar 

  • Yu, Y., Baoyin, H.: Astrophys. Space Sci. 343(1), 75 (2013). https://doi.org/10.1007/s10509-012-1220-5

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the Improvement Coordination Higher Education Personnel - Brazil (CAPES) - Financing Code 001 and National Council for Scientific and Technological Development (CNPq, proc. 305210/2018-1). This research was financed in part by the thematic project FAPESP (proc. 2016/24561-0), and it also had computational resources provided by the Center for Mathematical Sciences Applied to Industry (CeMEAI), funded by FAPESP (grant 2013/07375-0). We are also grateful to the entire New Horizons mission team for making the encounter with KBO Arrokoth possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Amarante.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below are the links to the electronic supplementary material.

(MP4 11.7 MB)

(MP4 959 kB)

(MP4 9.0 MB)

Appendix:  collisional and escape criteria

Appendix:  collisional and escape criteria

The inertia tensor of the Arrokoth contact binary can be used to measure the dimensions of an ‘equivalent’ triaxial ellipsoid around Arrokoth’s surface (Dobrovolskis 1996). This ellipsoid has the following dimensions with principal semiaxes \(a\), \(b\), and \(c\) computed by:

$$\begin{aligned} a=\sqrt{\frac{5(I_{{yy}}+I_{{zz}}-I_{{xx}})}{2M}}, \\ b=\sqrt{\frac{5(I_{{xx}}+I_{{zz}}-I_{{yy}})}{2M}}, \\ c=\sqrt{\frac{5(I_{{xx}}+I_{{yy}}-I_{{zz}})}{2M}}. \end{aligned}$$
(8)

The most recent shape model of the Arrokoth contact binary from Spencer et al. (2020) applied in Eqs. (8) leads us to consider this peculiar minor body with principal semiaxes of \(\sim21 \times9 \times5\) km. Our collisional code is implemented considering that the particle hits the surface of Arrokoth when it passes through its polyhedric triangular mesh. The algorithm starts to verify if the particle impacted Arrokoth’s surface when its trajectory is inside the equivalent ellipsoid. This process is performed to reduce the computational time effort during the integration. In addition, the code uses the ray-casting method (Roth 1982) to find the approximate site across all triangular faces that have been impacted by the particle. The signals of the determinants from fives tetrahedra are used for this purpose:

$$\begin{aligned} &\left| \textstyle\begin{array}{c@{\quad}c@{\quad}c@{\quad}c} x_{0} & y_{0} & z_{0} & 1 \\ x_{1} & y_{1} & z_{1} & 1 \\ x_{2} & y_{2} & z_{2} & 1 \\ x_{3} & y_{3} & z_{3} & 1 \end{array}\displaystyle \right|, \left| \textstyle\begin{array}{c@{\quad}c@{\quad}c@{\quad}c} x & y & z & 1 \\ x_{1} & y_{1} & z_{1} & 1 \\ x_{2} & y_{2} & z_{2} & 1 \\ x_{3} & y_{3} & z_{3} & 1 \end{array}\displaystyle \right|, \left| \textstyle\begin{array}{c@{\quad}c@{\quad}c@{\quad}c} x_{0} & y_{0} & z_{0} & 1 \\ x & y & z & 1 \\ x_{2} & y_{2} & z_{2} & 1 \\ x_{3} & y_{3} & z_{3} & 1 \end{array}\displaystyle \right|, \\ &\left| \textstyle\begin{array}{c@{\quad}c@{\quad}c@{\quad}c} x_{0} & y_{0} & z_{0} & 1 \\ x_{1} & y_{1} & z_{1} & 1 \\ x & y & z & 1 \\ x_{3} & y_{3} & z_{3} & 1 \end{array}\displaystyle \right|, \left| \textstyle\begin{array}{c@{\quad}c@{\quad}c@{\quad}c} x_{0} & y_{0} & z_{0} & 1 \\ x_{1} & y_{1} & z_{1} & 1 \\ x_{2} & y_{2} & z_{2} & 1 \\ x & y & z & 1 \end{array}\displaystyle \right|, \end{aligned}$$

where \((x, y, z)\) are the particle coordinates. \((x_{0}, y_{0}, z_{0})\) (polyhedron’s barycenter), \((x_{1}, y_{1}, z_{1})\), \((x_{2}, y_{2}, z_{2})\), and \((x_{3}, y_{3}, z_{3})\) are the tetrahedra vertices. Therefore, the particle impact the surface of the Arrokoth contact binary if the previous five determinants have the same sign.

Additionally, our code also uses escape criteria as a periodic effect. The particle is removed from the numerical simulation if its orbital radius is outside a sphere, with a 100-km radius, far from the dynamical environment around Arrokoth. Both criteria are implemented in the Minor-Mercury packageFootnote 8 (Amarante et al. 2021), an N-body integrator from the original Mercury code (Chambers 1999) to handle an irregular-shaped minor body.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amarante, A., Winter, O.C. The fate of particles in the dynamical environment around Kuiper-Belt object (486958) Arrokoth. Astrophys Space Sci 367, 38 (2022). https://doi.org/10.1007/s10509-022-04065-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-022-04065-2

Keywords

Navigation