Skip to main content
Log in

Bifurcated outflow jet in a solar wind reconnection exhaust

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

We present new observations of the reconnection outflow jet obtained from the crossing of a solar wind reconnection exhaust by the Wind spacecraft on 5 March 2001. The outflow jet is characterized by a bifurcated configuration, which is different from typical reconnection exhausts. The two outflow jets are mainly distributed in the region close to the exhaust boundaries. Between the two jets, the bulging of the magnetic field and the slight depression of the plasma density are observed. The possible mechanism for the bifurcation of the outflow jet has also been investigated by using a magnetohydrodynamics (MHD) simulation of Petschek-type reconnection. The dynamic patterns of the reconnection exhaust are analyzed in detail. We find that the bifurcated jet is one of the transient configurations produced in the magnetic reconnection. Other observed features of the exhaust show similar agreement with the predictions from the simulation. The study of the reconnection exhaust, over multiple spatial scales, provides an insight into the dynamic evolution of solar wind reconnection exhausts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abe, S.A., Hoshino, M.: Nonlinear evolution of plasmoid structure. Earth Planets Space 53, 663 (2001)

    Article  ADS  Google Scholar 

  • Angelopoulos, V., Runov, A., Zhou, X.-Z., Turner, D.L., Kiehas, S.A., Li, S.-S., Shinohara, I.: Electromagnetic energy conversion at reconnection fronts. Science 341, 1478 (2013)

    Article  ADS  Google Scholar 

  • Birn, J., Drake, J.F., Shay, M.A., Rogers, B.N., Denton, R.E., Hesse, M., Kuznetsova, M., Ma, Z.W., Bhattacharjee, A., Otto, A., Pritchett, P.L.: Geospace Environmental Modeling (GEM) magnetic reconnection challenge. J. Geophys. Res. 106, 3715 (2001)

    Article  ADS  Google Scholar 

  • Cassak, P.A., Drake, J.F., Gosling, J.T., Phan, T.-D., Shay, M.A., Shepherd, L.S.: On the cause of supra-arcade downflows in solar flares. Astrophys. J. Lett. 775, L14 (2013)

    Article  ADS  Google Scholar 

  • Chian, A.C.-L., Muñoz, P.R.: Detection of current sheets and magnetic reconnections at the turbulent leading edge of an interplanetary coronal mass ejection. Astrophys. J. Lett. 733, L34 (2011)

    Article  ADS  Google Scholar 

  • Davis, M.S., Phan, T.D., Gosling, J.T., Skoug, R.M.: Detection of oppositely directed reconnection jets in a solar wind current sheet. Geophys. Res. Lett. 33, L19102 (2006)

    Article  ADS  Google Scholar 

  • Evans, C.R., Hawley, J.F.: Simulation of magnetohydrodynamic flows: a constrained transport method. Astrophys. J. 332, 659 (1988)

    Article  ADS  Google Scholar 

  • Feng, H., Wang, J.: Magnetic-reconnection exhausts in the sheath of magnetic clouds. Astron. Astrophys. 559, A92 (2013)

    Article  ADS  Google Scholar 

  • Feng, X., Hu, Y., Wei, F.: Modeling the resistive MHD by the CESE method. Sol. Phys. 235, 235 (2006)

    Article  ADS  Google Scholar 

  • Feng, X., Zhang, S., Xiang, C., Yang, L., Jiang, C., Wu, S.T.: A hybrid solar wind model of the CESE+HLL method with a Yin-Yang overset grid and an AMR grid. Astrophys. J. 734, 50 (2011)

    Article  ADS  Google Scholar 

  • Fuchs, F.G., Mishra, S., Risebro, N.H.: Splitting based finite volume schemes for ideal MHD equations. J. Comput. Phys. 228, 641 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Gosling, J.T., Skoug, R.M., McComas, D.J., Smith, C.W.: Direct evidence for magnetic reconnection in the solar wind near 1 AU. J. Geophys. Res. 110, A01107 (2005)

    ADS  Google Scholar 

  • Gosling, J.T., Eriksson, S., Schiwenn, R.: Petschek-type magnetic reconnection exhausts in the solar wind well inside 1 AU: Helios. J. Geophys. Res. 111, A10102 (2006a)

    Article  ADS  Google Scholar 

  • Gosling, J.T., Eriksson, S., Skoug, R.M., McComas, D.J., Forsyth, R.J.: Petschek-type reconnection exhausts in the solar wind well beyond 1 AU: Ulysses. Astrophys. J. 644, 613 (2006b)

    Article  ADS  Google Scholar 

  • Gosling, J.T., Eriksson, S., Blush, L.M., Phan, T.D., Luhmann, J.G., McComas, D.J., Skoug, R.M., Acuna, M.H., Russell, C.T., Simunac, K.D.: Five spacecraft observations of oppositely directed exhaust jets from a magnetic reconnection X-line extending \(>4.26\times 10^{6}\) km in the solar wind at 1 AU. Geophys. Res. Lett. 34, L20108 (2007)

    Article  ADS  Google Scholar 

  • Gosling, J.T.: Magnetic reconnection in the solar wind. Space Sci. Rev. 172, 187 (2012)

    Article  ADS  Google Scholar 

  • Harten, A., Lax, P.D., van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25, 35 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Hudson, P.D.: Discontinuities in an anisotropic plasma and their identification in the solar wind. Planet. Space Sci. 18, 1611 (1970)

    Article  ADS  Google Scholar 

  • Karimabadi, H., Krauss-Varban, D., Omidi, N., Vu, H.X.: Magnetic structure of the reconnection layer and core field generation in plasmoids. J. Geophys. Res. 104, 12313 (1999)

    Article  ADS  Google Scholar 

  • Karimabadi, H., Dorelli, J., Vu, H.X., Loring, B., Omelchenko, Y.: Is quadrupole structure of out-of-plane magnetic field evidence for Hall reconnection? AIP Conf. Proc. 1320, 137 (2011)

    Article  ADS  Google Scholar 

  • Lapenta, G., Goldman, M.V., Newman, D.L., Markidis, S.: Energy exchanges in reconnection outflows. Plasma Phys. Control. Fusion 59, 014019 (2017)

    Article  ADS  Google Scholar 

  • Lepping, R.P., Acũna, M.H., Burlaga, L.F., Farrell, W.M., Slavin, J.A., Schatten, K.H., Mariani, F., Ness, N.F., Neubauer, F.M., Whang, Y.C., Byrnes, J.B., Kennon, R.S., Panetta, P.V., Scheifele, J., Worley, E.M.: The Wind magnetic field investigation. Space Sci. Rev. 71, 207 (1995)

    Article  ADS  Google Scholar 

  • Lin, R.P., Anderson, K.A., Ashford, S., Carlson, C., Curtis, D., Ergun, R., Larson, D., McFadden, J., McCarthy, M., Parks, G.K., Rème, H., Bosqued, J.M., Coutelier, J., Cotin, F., D’uston, C., Wenzel, K.-P., Sanderson, T.R., Henrion, J., Ronnet, J.C., Paschmann, G.: A three-dimensional plasma and energetic particle investigations for the Wind spacecraft. Space Sci. Rev. 71, 125 (1995)

    Article  ADS  Google Scholar 

  • Liu, C., Feng, X., Wan, M., Guo, J.: Dynamic patterns of self-organization inflow in collisionless magnetic reconnection. Astrophys. Space Sci. 364, 127 (2019)

    Article  ADS  Google Scholar 

  • Liu, Y.-H., Drake, J.F., Swisdak, M.: The structure of the magnetic reconnection exhaust boundary. Phys. Plasmas 19, 022110 (2012)

    Article  ADS  Google Scholar 

  • MacNeice, P., Olson, K.M., Mobarry, C., de Fainchtein, R., Packer, C.: PARAMESH: a parallel adaptive mesh refinement community toolkit. Comput. Phys. Commun. 126, 330 (2000)

    Article  ADS  MATH  Google Scholar 

  • Mistry, R., Eastwood, J.P., Hietala, H.: Detection of small-scale folds at a solar wind reconnection exhaust. J. Geophys. Res. 120, 30 (2015a)

    Article  Google Scholar 

  • Mistry, R., Eastwood, J.P., Phan, T.D., Hietala, H.: Development of bifurcated current sheets in solar wind reconnection exhausts. Geophys. Res. Lett. 42, 10513 (2015b)

    Article  ADS  Google Scholar 

  • Paschmann, G., Sonnerup, B.U.Ö., Papamastorakis, I., Sckopke, N., Haerendel, G., Bame, S.J., Asbridge, J.R., Gosling, J.T., Russel, C.T., Elphic, R.C.: Plasma acceleration at the Earth’s magnetopause: evidence for reconnection. Nature 282, 243 (1979)

    Article  ADS  Google Scholar 

  • Paschmann, G., Papamastorakis, I., Baumjohann, W., Sckopke, N., Carlson, C.W., Sonnerup, B.U.Ö., Lühr, H.: The magnetopause for large magnetic shear: AMPTE/IRM observations. J. Geophys. Res. 91, 11099 (1986)

    Article  ADS  Google Scholar 

  • Petschek, H.E.: Magnetic field annihilation. NASA Spec. Publ. 50, 425 (1964)

    ADS  Google Scholar 

  • Phan, T.D., Gosling, J.T., Davis, M.S., Skoug, R.M., Øieroset, M., Lin, R.P., Lepping, R.P., McComas, D.J., Smith, C.W., Reme, H., Balogh, A.: A magnetic reconnection X-line extending more than 390 Earth radii in the solar wind. Nature 439, 175 (2006)

    Article  ADS  Google Scholar 

  • Phan, T.D., Gosling, J.T., Davis, M.S.: Prevalence of extended reconnection X-lines in the solar wind at 1 AU. Geophys. Res. Lett. 36, L09108 (2009)

    Article  ADS  Google Scholar 

  • Phan, T.D., Bale, S.D., Eastwood, J.P., Lavraud, B., Drake, J.F., Oieroset, M., Shay, M.A., Pulupa, M., Stevens, M., MacDowall, R.J., Case, A.W., Larson, D., Kasper, J., Whittlesey, P., Szabo, A., Korreck, K.E., Bonnell, J.W., Dudok de Wit, T., Goetz, K., Harvey, P.R., Horbury, T.S., Livi, R., Malaspina, D., Paulson, K., Raouafi, N.E., Velli, M.: Parker Solar Probe in situ observations of magnetic reconnection exhausts during encounter 1. Astrophys. J. Suppl. Ser. 246, 34 (2020)

    Article  ADS  Google Scholar 

  • Sato, T., Hayashi, T.: Externally driven magnetic reconnection and a powerful magnetic energy converter. Phys. Fluids 22, 1189 (1979)

    Article  ADS  Google Scholar 

  • Shimizu, T., Kondoh, K., Ugai, M.: Adiabatic expansion acceleration process in spontaneous fast magnetic reconnection. Adv. Space Res. 37, 1283 (2006)

    Article  ADS  Google Scholar 

  • Sonnerup, B.U.Ö., Cahill, L.J. Jr.: Magnetopause structure and attitude from Explorer 12 observations. J. Geophys. Res. 72, 171 (1967)

    Article  ADS  Google Scholar 

  • Tóth, G.: The \(\nabla \cdot B=0\) constraint in shock-capturing magnetohydrodynamics codes. J. Comput. Phys. 161, 605 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ugai, M.: Basic physical mechanism of fast reconnection evolution in space plasmas. Space Sci. Rev. 95, 601 (2001)

    Article  ADS  Google Scholar 

  • Vaivads, A., Khotyaintsev, Y., André, M., Retinò, A., Buchert, S.C., Rogers, B.N., Décréau, P., Paschmann, G., Phan, T.D.: Structure of the magnetic reconnection diffusion region from four-spacecraft observations. Phys. Rev. Lett. 93, 105001 (2004)

    Article  ADS  Google Scholar 

  • van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32, 101 (1979)

    Article  ADS  MATH  Google Scholar 

  • Vasyliunas, V.M.: Theoretical models of magnetic field line merging, 1. Rev. Geophys. 13, 303 (1975)

    Article  ADS  Google Scholar 

  • Wang, J., Wang, X., Xiao, C.: Out-of-plane bipolar and quadrupolar magnetic fields generated by shear flows in two-dimensional resistive reconnection. Phys. Lett. A 372, 4614 (2008)

    Article  ADS  MATH  Google Scholar 

  • Wei, F., Liu, R., Fan, Q., Feng, X.: Identification of the magnetic cloud boundary layers. J. Geophys. Res. 108, 1263 (2003)

    Article  Google Scholar 

  • Wu, C.C., Roberts, P.H.: Richtmyer-Meshkov instability and the dynamics of the magnetosphere. Geophys. Res. Lett. 26, 655 (1999)

    Article  ADS  Google Scholar 

  • Xu, X., Wang, Y., Wei, F., Feng, X., Deng, X., Ma, Y., Zhou, M., Pang, Y., Wong, H.-C.: Direct evidence for kinetic effects associated with solar wind reconnection. Sci. Rep. 5, 8080 (2014)

    Article  Google Scholar 

  • Zenitani, S., Miyoshi, T.: Magnotohydrodynamic structure of a plasmoid in fast reconnection in low-beta plasmas. Phys. Plasmas 18, 022105 (2011)

    Article  ADS  Google Scholar 

  • Zhou, Z., Wei, F., Feng, X., Wang, Y., Zuo, P., Xu, X.: Observation of interplanetary slow shock pair associated with reconnection exhaust in magnetic cloud boundary layer. Astrophys. J. 863, 84 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank R. P. Lepping and R. P. Lin and NASA/CDAWeb for providing Wind data used in this paper. This work was jointly supported by the Strategic Priority Research Program of Chinese Academy of Sciences, Grant No. XDB 41000000, the National Natural Science Foundation of China (grants 41231068, 41531073, 41204127 and 61872047), and the Specialized Research Fund for State Key Laboratories. The computations were performed by Numerical Forecast Modeling R\(\&\)D and VR System of State Key Laboratory of Space Weather.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoxu Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Feng, X., Guo, J. et al. Bifurcated outflow jet in a solar wind reconnection exhaust. Astrophys Space Sci 366, 2 (2021). https://doi.org/10.1007/s10509-020-03910-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-020-03910-6

Keywords

Navigation