Skip to main content

Advertisement

Log in

Effects of near-future-predicted ocean temperatures on early development and calcification of the queen conch Strombus gigas

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

The queen conch, Strombus (Lobatus) gigas, is one of six species of conch distributed throughout the Caribbean of significant commercial importance. The Caribbean region is adversely impacted by climate change, which affects the marine ecosystems and the calcification process of organisms with calcareous structures, such as mollusks. We tested the influence of global warming predicted in 2100 on queen conch, Strombus gigas larval development, growth, survival rate, and calcification by exposing egg masses and larvae to increased temperatures (28, 28.5, 29, 29.5, and 30 °C) for 30 days. For analysis of calcification, imaging and chemical mapping (proportion, wt) were performed on 30-day-old larvae using a high-resolution scanning electron microscopy (HR-SEM) and X-ray photoelectron spectroscopy (XPS). A temperature of 30 °C resulted in the highest larval growth rate (mean ± SD 27.33 ± 2.96 μm day−1), significantly among treatments (p ≤ 0.05). Development was fastest at 30 °C, where the first larvae settled by day 27 (49%) and the mortality rate was 76%. At 28 °C, day 29 was the first day where settlement was observed for 20% of the larvae. There are significant differences among treatments on larval growth and development. The calcification process of S. gigas larvae was not affected by the experimental temperatures tested. Percent Ca content of shelled larvae showed no significant differences among treatments (mean ± SD 25.44 ± 4.74 and 24.99 ± 0.74% w for larvae grown at 30 and 28 °C, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agard JBR (2014) Climate and water: global to local Caribbean socio-economic climate change scenarios. In: Global water partnership. https://www.slideshare. Global-to-local-caribbean-ocioeconomic-climate-change-scenarios. Available via SLIDESHARE. https://www.slideshare.net/globalwaterpartnership/global-to-local-caribbean-socioeconomic-climate-change-scenario. Cited 09 2014.

  • Aiken K, Kong A, Smikle S, Appeldoorn R, Warner G (2006) Managing Jamaica’s queen conch resources. Ocean Coast Manage 49:332–341

    Article  Google Scholar 

  • Arellano SM, Young CM (2011) Temperature and salinity tolerances of embryos and larvae of the deep-sea mytilid mussel “Bathymodiolus” childressi. Mar Biol 158(11):2481–2493

    Article  Google Scholar 

  • Barilé PJ, Stoner AW, Young CM (1994) Phototaxis and vertical migration of the queen conch Strombus gigas Linne. veliger larvae. J Exp Mar Biol Ecol 183:147–162

    Article  Google Scholar 

  • Berg CJ Jr (1976) Growth of queen conch, Strombus gigas, with a discussion of the practicality of its mariculture. Mar Biol 34:57–63

    Article  Google Scholar 

  • Brierley AS, Kingsford MJ (2009) Impacts of climate change on marine organisms and ecosystems. Curr Bio 19:602–614

    Article  Google Scholar 

  • Brito-Manzano N, Aldana-Aranda D (2004) Development, growth and survival of the larvae of queen conch Strombusgigas under laboratory conditions. Aquaculture 242:479–487

    Article  Google Scholar 

  • Brito-Manzano N, Aldana-Aranda D, Baqueiro-Cárdenas E (1999) Development, growth and survival of larvae of the fighting conch, Strombus pugilis L. (Mollusca, Gastropoda) in the laboratory. Bull Mar Sci 64(2):201–208

    Google Scholar 

  • Brownell WN (1977) Reproduction, laboratory culture and growth of Strombus.gigas, Strombus.costatus and Strombus.pugilis in Los Roques, Venezuela. Bull Mar Sci 27:668–680

    Google Scholar 

  • Byrne M (2011) Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. Oceanogr Mar Biol 49:1–42

    Google Scholar 

  • Byrne M, Ho M, Selvakumaraswamy P, Nguyen HD, Dworjanyn SA et al (2009) Temperature, but not pH, compromises sea urchin fertilization and early development under near-future climate change scenarios. P Roy Soc B 276:1883–1935

    Article  Google Scholar 

  • Byrne M, Selvakumaraswamy P, Ho M, Woolsey E, Nguyen HD (2011) Sea urchin development in a global change hotspot, potential for southerly migration of thermotolerant propagules. Deep-Sea Res Pt II 58:712–719

    Article  CAS  Google Scholar 

  • Byrne M, Ho M, Koleits L, Price C, King CK et al (2013) Vulnerability of the calcifying larval stage of the antarctic sea urchin Sterechinusneumayeri to near-future ocean acidification and warming. Glob Change Biol 19:2264–2275

    Article  Google Scholar 

  • Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365

    Article  CAS  PubMed  Google Scholar 

  • Chollett I, Mumby PJ, Muller-Karger FE, Huc C (2012) Physical environments of the. Caribbean Sea Limnol Oceanogr 57(4):1233–1244

    Article  Google Scholar 

  • Coma R, Ribes M, Serrano E, Jimenez E, Salat J et al (2009) Global warming-enhanced stratification and mass mortality events in the Mediterranean. P Natl Acad Sci USA 16:6176–6181

    Article  Google Scholar 

  • Davis M, Bolton CA, Stoner AW (1993) A comparison of larval development, growth and shell morphology in three Caribbean Strombus species. The Veliger 36:236–244

    Google Scholar 

  • De Silva SS, Soto D (2009) Climate change and aquaculture: potential impacts, adaptation and mitigation. In: Cochrane K, De Young C, Soto D, Bahri T (eds) Climate change implications for fisheries and aquaculture: overview of current scientific knowledge. FAO Fisheries and Aquaculture Technical Paper, No, vol 530. Rome, FAO. pp, pp 151–212

    Google Scholar 

  • Eakin CM, Morgan JA, Heron SF, Smith TB, Liu G et al (2010) Caribbean corals in crisis: record thermal stress, bleaching, and mortality in 2005. PLoS One 5(11):e13969

    Article  PubMed  PubMed Central  Google Scholar 

  • Enriquez-Diaz ME, Volland JM, Chavez-Villegas JF, Aldana-Aranda D, Gros O (2015) Development of the planktotrophic veligers and plantigrades of Strombus pugilis (Gastropoda). J Mollus Stu 81:335–344

    Article  Google Scholar 

  • Feely RA, Doney SC, Cooley SR (2009) Ocean acidification: present conditions and future changes in a high-CO2 world. Oceanography 22:36–47

    Article  Google Scholar 

  • Furst M, Lowenstam HA, Burnett DS (1976) Radiographic study of the distribution of boron in recent mollusc shells. Geochim Cosmochim Acta 40:1381–1386

    Article  CAS  Google Scholar 

  • García Santaella E, Aldana Aranda D (1994) Effect of algal food and feeding schedule on larval growth and survival rates of the queen conch, Strombus gigas (Mollusca, Gastropoda), in Mexico. Aquaculture 128:261–268

    Article  Google Scholar 

  • Gazeau F, Gattuso JP, Greaves M, Elderfield H, Peene J et al (2011) Effect of carbonate chemistry alteration on the early embryonic development of the Pacific oyster (Crassostrea gigas). PLoS One 6(8):e 23 010

    Article  CAS  Google Scholar 

  • Glauert AM (1975) Fixation, dehydration and embedding of biological specimens. In: Glauert AM (ed) Practical methods in electron microscopy. Vol. 3. Part I. North-Holland, Amsterdam pp 1–207.

  • Harley CDG, Hughes AR, Hultgren KM, Miner BG, Sorte CGB et al (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241

    Article  PubMed  Google Scholar 

  • Hensen RR (1983) Queen conch management and culture in the Netherlands Antilles. Proc Gulf Carib Fish Inst 35:53–56

    Google Scholar 

  • Heyman WD, Dobberteen RA, Urry LA, Heyman AM (1989) Pilot hatchery for the queen conch Strombus gigas, shows potential for inexpensive and appropriate technology for larval aquaculture in the Bahamas. Aquaculture 77:277–285

    Article  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR et al (2003) Climate change, human impacts and the resilience of coral reefs. Science 301:929–934

    Article  CAS  PubMed  Google Scholar 

  • Intergovernmental Panel on Climate Change. (2007). Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (Eds.) Cambridge University Press. p 976.

  • Jorgensen CB (1983) Fluid mechanical aspects of suspension feeding. Mar Ecol Prog Ser 11:89–103

    Article  Google Scholar 

  • Kinne O (1970) Invertebrates. Temperature effects. In: Kinne O (ed.). Marine Ecology. Environmental Factors. Chichester, UK: Wiley-Interscience 407–514.

  • Kurihara H, Kato S, Ishimatsu A (2007) Effects of increased seawater pCO2 on early development of the oyster Crassostrea gigas. Aquat Biol 1(1):91–98. doi:10.3354/ab00009

    Article  CAS  Google Scholar 

  • Mavromatis V, Schmidt M, Botz R, Comas-Bru L, Oelkers EH (2012) Experimental quantification of the effect of Mg on calcite–aqueous fluid oxygen isotope fractionation. Chem Geol 310-311:97–105

    Article  CAS  Google Scholar 

  • Miller AW, Reynolds AC, Sobrino C, Riedel GF (2009) Shellfish face uncertain futures in high ρCO2 world: influence of acidification in oyster larvae calcification and growth in estuaries. PLoS One 4(5):108 e5661

    Google Scholar 

  • O’Connor MI, Bruno JF, Gaines SD, Halpern BS, Lester SE et al (2007) Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. P Natl Acad Sci, USA 104:1266–1271

    Article  Google Scholar 

  • O’Connor MI, Piehler MF, Leech DM, Anton A, Bruno JF (2009) Warming and resource availability shift food web structure and metabolism. PLoS Biol 7(8):1–5 e1000178

    Google Scholar 

  • Orr JC, Fabry VJ, Aumont O (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    Article  CAS  PubMed  Google Scholar 

  • Oxenford HA, Fields A, Taylor C, Catlyn D (2008) The little-known conch (Strombus gigas) fishery of Barbados. Proc Gulf Caribb Fish Inst 60:125–136

    Google Scholar 

  • Podolsky RD (1994) Temperature and water viscosity: physiological versus mechanical effects on suspension feeding. Science 265:100–103

    Article  CAS  PubMed  Google Scholar 

  • Porter SM (2007) Sea water chemistry and early carbonate biomineralization. Science 316:1302

    Article  CAS  PubMed  Google Scholar 

  • Randall CJ, Szmant AM (2009) Elevated temperature affects development, survivorship, and settlement of the Elkhorn coral, Acroporapalmata (Lamarck 1816). Biol Bull 217:269–282

    Article  PubMed  Google Scholar 

  • Ray M, Davis M (1989) Algae production for commercially grown queen conch (Strombus gigas). Proc Gulf Caribb Fish Inst 39:453–457

    Google Scholar 

  • Reynaud S, Leclercq N, Romaine-Lioud S, Ferrier-Pagès C et al (2003) Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Glob Change Biol 9:1660–1668

    Article  Google Scholar 

  • Ries JB (2011) Skeletal mineralogy in a high-CO2 world. Geochim Cosmochim Act 75:4053–4064

    Article  CAS  Google Scholar 

  • Roopnarine PD, Fitzgerald P, Byars G, Kilb K (1998) Coincident Boron Profiles of Bivalves from the Gulf of California: Implications for the Calculation of Paleosalinities Research letters 13:395–400.

  • Rosenberg GD, Jones CB (1975) Approaches to chemical periodicities in molluscs and stromatolites: In: Rosenberg GD, Runcorn SK (Eds.) Growth Rhythms and the History of the Earth’s Rotation: John Wiley and Sons, London, p223–242.

  • Sanyal A, Nugent M, Reeder RJ, Bijma J (2000) Seawater pH control on the boron isotopic composition of calcite: evidence from inorganic calcite precipitation experiments. Geochim Cosmochim Act 64:1551–1555

    Article  CAS  Google Scholar 

  • Schetelma RS (1967) The relationship to temperature to the larval development in Nassarius obsoletus (Gastropoda). Biol Bull 129:340–354

    Article  Google Scholar 

  • Sheppard BH, Soars N, Dworjanyn SA, Davis AR et al (2010) Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla. PLoS One 5(6):1–7 e11372

    Google Scholar 

  • Sherwood OA, Heikoop JM, Scott DB, Risk MJ, Guilderson TP, McKinney RA (2005) Stable isotopic composition of deep-sea gorgonian corals Primnoa spp.: a new archive of surface processes. Mar Ecol Prog Ser 301:135–148

    Article  CAS  Google Scholar 

  • Shimeta J, Jumars PA (1991) Physical mechanisms and rates of particle capture by suspension feeders. Oceanogr Mar Biol Annu Rev 29:19 l–1257

    Google Scholar 

  • Siddall SE (1983) Density dependent levels of activity of juveniles of the queen conch Strombus gigas Linné. J Shellfish Res 4:67–74

    Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880-2006). J Clim 21(10):2283–2296

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practices of statistics in biological research. 3rd edition. Blume, Madrid, España.

  • Southward AJ, Hawkins SJ, Burrows MT (1995) Seventy years’ observations of changes in distribution and abundance of zooplankton and intertidal organisms in the western English Channel in relation to rising sea temperature. J Therm Biol 20:127–155

    Article  Google Scholar 

  • Stachowicz JJ, Terwin JR, Whitlatch RB, Osman RW (2002) Linking climate change and biological invasions: ocean warming facilitates nonindigenous species invasions. P Natl Acad Sci USA 99:15497–15500

    Article  CAS  Google Scholar 

  • Stoner AW, Sandt VJ, Boidron-Metarion IF (1992) Seasonality in reproductive activity and larvae abundance of queen conch Strombus gigas. Fish BNOOA 90:161–170

    Google Scholar 

  • Talmage SC, Gobler CJ (2011) Effects of elevated temperature and carbon dioxide on the growth and survival of larvae and juveniles of three species of Northwest Atlantic bivalves. PLoS One 6(10):1–13 e26941

    Article  Google Scholar 

  • Tarutani T, Clayton RN, Mayeda TK (1969) The effect of polymorphism and magnesium 25 substitution on oxygen isotope fractionation between calcium carbonate and water. Geochim Cosmochim Ac 33:987–996

    Article  CAS  Google Scholar 

  • Theile S (2001) Queen conch fisheries and their management in the Caribbean. Traffic Europe, Technical report to the cites secretariat in completion of contract a-2000/01. p.95

  • Travers MA, Basuyaux O, Le Goic H, Huchette S et al (2009) Influence of temperature and spawning effort on Haliotis tuberculata mortalities caused by Vibrio harveyi: an example of emerging vibriosis linked to global warming. Glob Change Biol 15:1365–1376

    Article  Google Scholar 

  • Vengosh A, Kolodny Y, Starinsky A, Chivas AR, Mc-Culloch MT (1991) Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates. Geochimica et Cosmochimica Act 55:2901–2910

    Article  CAS  Google Scholar 

  • Volland JM, Lechaire JP, Frebourg G, Aranda DA, Ramdine G, Gros O (2012) Insight of EDX analysis and EFTEM: 21073. Are spherocrystals located in Strombidae digestive gland implied in detoxification of trace metals. Microsc Res Tech 75(4):425–432

    Article  CAS  PubMed  Google Scholar 

  • Wright DA, Kennedy VS, Roosenburg VH, Castagna M et al (1983) Temperature tolerance of embryos and larvae of five bivalve species under simulated power plant entrainment conditions: a synthesis. Mar Biol 77:271–278

    Article  Google Scholar 

  • Yazdi SK, Shakouri B (2010) The effects of climate change on aquaculture. Int J Environ Sci Develop 1(5):378–382

    Article  Google Scholar 

  • Yoshimura T, Tanimizu M, Inoue M, Suzuki A, Iwasaki N, Kawahata H (2011) Mg isotope fractionation in biogenic carbonates of deep-sea coral, benthic foraminifera, and hermatypic coral. Anal Bioanal Chem 401:2755–2769

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura T, Suzuki A, Iwasaki N (2015a) Ba, B, and U element partitioning in magnesian calcite skeletons of Octocorallia corals. Biogeosci Discuss 12:413–444

    Article  Google Scholar 

  • Yoshimura T, Suzuki A, Iwasaki N (2015b) Mechanism of O and C isotope fractionation in 25 magnesian calcite skeletons of Octocorallia corals and an implication on their calcification response to ocean acidification. Biogeosci Discuss 12:389–412

    Article  Google Scholar 

  • Zeebe RE, Wolf-Gladrow D (2001) CO2 in seawater: equilibrium, kinetics, isotopes. In: Halpern D (ed) Elsevier oceanography series, Series 65 Elsevier Amsterdam

  • Zippay ML, Hofmann GE (2010a) Physiological tolerances across latitudes: thermal sensitivity on larval marine snails (Nucella spp.) Mar Biol 157:707–714

    Article  PubMed  Google Scholar 

  • Zippay ML, Hofmann GE (2010b) Effect of pH on gene expression and thermal tolerance of early life history stages of red abalone (Haliotis rufescens) on larval marine snails (Nucella spp.) J Shellfish Res 29:429–439

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the proposal of Mexicain Council for Science, CONACyT No. 181329 (El caracol rosa como indicador del cambio climático en el Caribe: Calentamiento y Acidificación oceánica). Measurements were performed at LANNBIO CINVESTAV IPN Merida (Lab-2009-01 No. 123913, CB2012/178947). The authors acknowledge Dora Huerta for technical support on electron microscopy and Dr. Gemma Franklin, a native English speaker, for reviewing the manuscript. The authors are grateful for the comments made by the two reviewers to improve this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalila Aldana Aranda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aranda, D.A., Manzano, N.B. Effects of near-future-predicted ocean temperatures on early development and calcification of the queen conch Strombus gigas . Aquacult Int 25, 1869–1881 (2017). https://doi.org/10.1007/s10499-017-0153-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-017-0153-y

Keywords

Navigation