Skip to main content
Log in

Uranium and Multi-element Release from Orthogneiss and Granite (Austria): Experimental Approach Versus Groundwater Composition

  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

In this study, the release of elements and in particular U from five Austrian orthogneiss and granite samples into a CO2-bearing solution was investigated to describe the initial phase (24 h) of leaching focusing on the impact of ferrous (hydro)oxide formation. Experiments were conducted at ambient temperature by flushing CO2:N2 gas through the reactive solution (pHinitial ~ 4.3) at a liquid:solid ratio of 10:1 with and without a reducing agent. The chemical evolution of the leaching solution was dominated by incongruent dissolution of silicates showing a parabolic kinetic behavior due to protective surface formation most likely caused by precipitation of amorphous FeIII/Al hydroxides. However, the relative distribution of Ca, Mg and Sr in the leaching solution excellently traced the individual bulk rock composition. The mobilization of U was highly prevented under oxidizing conditions by sorption onto ferrous (hydro)oxides, which were precipitating through ongoing silicate leaching. Therefore, the leaching behavior of individual U-bearing minerals was less relevant for U release. At reducing conditions, the above elements were accumulated in the solution, although an oversaturation regarding UIVO2 was calculated. This indicates its inhibited formation within the experimental run time. The composition of experimental leaching solutions did not reflect analyzed groundwater compositions from investigated local rock-type aquifers indicating that reaction rate constants of siliceous rocks significantly differ between values found in nature and in the laboratory. Change in active mineral surface areas with ongoing weathering, accumulation of secondary precipitates, leached layer formation and given reaction time are key factors for distinct elemental release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acker JG, Bricker OP (1992) The influence of pH on biotite dissolution and alteration kinetics at low temperature. Geochim Cosmochim Acta 56:3073–3092

    Article  Google Scholar 

  • Alam MS, Cheng T (2014) Uranium release from sediment to groundwater: influence of water chemistry and insights into release mechanisms. J Contam Hydrol 164:72–87

    Article  Google Scholar 

  • Appelo CAJ, Postma D (2005) Geochemistry. Groundwater and Pollution. AA Balkema Publishers, Amsterdam

    Book  Google Scholar 

  • Austrian Water Quality Regulation (2012) BGBl. II 359/2012. https://www.ris.bka.gv.at/Dokumente/BgblAuth/BGBLA_2012_II_359/BGBLA_2012_II_359.pdf. Accessed 25 Mar 2018

  • Barnett MO, Jardine PM, Brooks SC (2002) U(VI) adsorption to heterogeneous subsurface media. Application of a surface complexation model. Environ Sci Technol 36:937–942

    Article  Google Scholar 

  • Berka R, Katzelsberger C, Philippitsch R, Schubert G, Korner M, Landstetter C, Motschka K, Pirkl H, Grath J, Draxler A, Hörhan T (2014) Erläuterungen zur Geologischen Themenkarte Radionuklide in Grundwässern, Gesteinen und Bachsedimenten Österreichs 1:500 000. Geological Survey of Austria, Vienna

    Google Scholar 

  • Berner RA (1981) Kinetics of weathering and diagenesis. In: Lasaga AC, Kirkpatrick RJ (eds) Kinetics of geochemical processes. Reviews in mineralogy, vol 8, pp 111–133

  • Bernhard G, Geipel G, Reich T, Brendler V, Amayri S, Nitsche H (2001) Uranyl(VI) carbonate complex formation: validation of the Ca2UO2(CO3)3(aq.) species. Radiochim Acta 89:511–518

    Article  Google Scholar 

  • Brantley SL, Kubicki JD, White AF (2008) Kinetics of water–rock interactions. Springer, New York

    Book  Google Scholar 

  • Bunzl K, Schmidt W, Sansoni B (1976) Kinetics of ion exchange in soil organic matter. IV Adsorption and desorption of Pb2+. Cu2+. Cd2+. Zn2+ and Ca2+ by peat. J Soil Sci 17:32–41

    Article  Google Scholar 

  • Chappell BW, White AJR (1974) Two contrasting granite types. Pac Geol 7:173–174

    Google Scholar 

  • Davis JA, Meece DE, Kohler M, Curtis GP (2004) Approaches to surface complexation modelling of uranium(VI) adsorption on aquifer sediments. Geochim Cosmochim Acta 68:3621–3641

    Article  Google Scholar 

  • Declercq J, Oelkers EH (2014) CarbFix report. PHREEQC mineral dissolution kinetics database. Geoscience Environment Toulouse, Toulouse

    Google Scholar 

  • Desbarats AJ, Percival JB, Venance KE (2016) Trace element mobility in mine waters from granitic pegmatite U-Th–REE deposits. Bancroft area. Ontario. Appl Geochem 67:153–167

    Article  Google Scholar 

  • DIN 19529:2015–12 Leaching of solid materials. Batch test for the examination of the leaching behaviour of inorganic and organic substances at a liquid to solid ratio of 2 l/kg

  • Dittrich TM, Reimus PW (2015) Uranium transport in a crushed granodiorite: experiments and reactive transport modelling. J Contam Hydrol 175–176:44–59

    Article  Google Scholar 

  • Dong W, Brooks SC (2006) Determination of the formation constants of ternary complexes of uranyl and carbonate with alkaline earth metals (Mg2+. Ca2+. Sr2+ and Ba2+) using anion exchange method. Environ Sci Technol 40:4689–4695

    Article  Google Scholar 

  • Duff MC, Hunter DB, Bertsch PM, Amrhein C (1999) Factors influencing uranium reduction and solubility in evaporation pond sediments. Biogeochemistry 45:95–114

    Google Scholar 

  • Eyal Y, Olander DR (1990) Leaching of uranium and thorium from monazite: I. Initial leaching. Geochim Cosmochim Acta 54:1867–1877

    Article  Google Scholar 

  • Finch RJ, Murakami T (1999) Systematics and paragenesis of uranium minerals. In: Burns CB, Finch R (eds) Uranium: mineralogy, geochemistry and the environment. Reviews in mineralogy, vol 38, pp 91–181

  • Finger F, Schubert G (2015) Die Böhmische Masse in Österreich: was gibt es Neues? Abhandlungen der Geologischen Bundesanstalt 64:167–179

    Google Scholar 

  • Fox PM, Davis JA, Zachara JM (2006) The effect of calcium on aqueous uranium(VI) speciation and adsorption to ferrihydrite and quartz. Geochim Cosmochim Acta 70:1379–1387

    Article  Google Scholar 

  • Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 42:2033–2048

    Article  Google Scholar 

  • Gerdes A, Friedl G, Parrish RR, Finger F (2003) High-resolution geochronology of Variscan granite emplacement—the South Bohemian Batholith. J Czech Geol Soc 48:53–54

    Google Scholar 

  • Grenthe I (2006) Uranium. In: Morss LR (ed) The chemistry of actinide and transactinide elements. Springer, Dordrecht, pp 253–698

    Chapter  Google Scholar 

  • Haunschmid B (1993) Zentralgneisgenerationen im östlichen Tauernfenster. Dissertation, University of Salzburg

  • House WA, Orr DR (1992) Investigation of the pH dependence of the kinetics of quartz dissolution at 25 °C. J Chem Soc Faraday Trans 88:233–241

    Article  Google Scholar 

  • Karpas Z (2015) Analytical chemistry of uranium. Environmental. Forensic. Nuclear and toxicological applications. CRC Press, Boca Raton

    Google Scholar 

  • Le Maitre RW, Bateman P, Dudek A, Keller J, Lameyre J, Le Bas MJ, Sabine PA, Schmid R, Sorensen H, Streckeisen A, Woolley AR, Zanettin B (1989) A classification of igneous rocks and glossary of terms: recommendations of the international union of geological sciences subcommission on the systematics of igneous rocks. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Manley EP, Evans LJ (1986) Dissolution of feldspars by low-molecular-weight aliphatic and aromatic acids. J Soil Sci 141:106–112

    Article  Google Scholar 

  • Merkel BJ, Planer-Friedrich B (2008) Grundwasserchemie. Springer, Berlin

    Google Scholar 

  • Mielke P, Winkler HGF (1979) Eine bessere Berechnung der Mesonorm für granitische Gesteine. Neu Jb Mineral Mh 10:471–480

    Google Scholar 

  • Milnes AG (1974) Structure of the Pennine Zone (Central Alps): a new working hypothesis. Geol Soc Am Bull 85:1727–1732

    Article  Google Scholar 

  • Nair S, Merkel BJ (2015) Sorption of U(VI) and As(V) on SiO2. Al2O3. TiO2 and FeOOH: a column experiment study. In: Merkel JM, Arab A (eds) Uranium—past and future challenges. Springer, Berlin, pp 259–270

    Google Scholar 

  • Noubactep C, Sonnefeld J, Merten D, Heinrichs T, Sauter M (2006) Effects of the presence of pyrite and carbonate minerals on the kinetics of uranium release from a natural rock. J Radioanal Nucl Chem 270:325–333

    Article  Google Scholar 

  • Noubactep C, Schöner A, Schubert M (2008) Characterizing As Cu.Fe and U solubilization by natural waters. In: Merkel JM, Hasche-Berger AH (eds) Uranium. Mining and hydrogeology. Springer, Berlin, pp 549–559

    Chapter  Google Scholar 

  • Pestal G, Hejl E, Braunstingl R, Schuster R, Draxler I, Egger H, Heinrich M, Lenhardt WA, Letouze-Zezula G, Linner M, Mandl GW, Moshammer B, Rupp C, Schedl A, Van Husen D, Wimmer-Frey I, Valentin G (2009) Geologische Karte von Salzburg 1:200 000: Erläuterungen. Verlag der Geologischen Bundesanstalt, Vienna

    Google Scholar 

  • Puigdomenech I, Casas I, Bruno J (1990) Kinetics of UO2(s) dissolution under reducing conditions: numerical modelling. Swedish Nuclear Fuel Waste Management Co, SKB Technical Report, Stockholm

  • Sachs S, Geipel G, Bernhard G (2006) Impact of humic acid on the uranium migration in the environment. In: Merkel BJ, Hasche-Berger A (eds) Uranium in the environment. Springer, Berlin, pp 107–116

    Chapter  Google Scholar 

  • Schönlaub HP, Schuster R (2015) Die zweigeteilten Karawanken und ihre erdgeschichtliche Entwicklung. Naturwissenschaftlicher Verein für Kärnten, Klagenfurt

    Google Scholar 

  • Waite TD, Davis JA, Payne TE, Waychunas GA, Xi N (1994) Uranium(VI) adsorption to ferrihydrite: application of a surface complexation. Geochim Cosmochim Acta 58:5465–5478

    Article  Google Scholar 

  • Wemhöner U, Humer F, Schubert G, Berka R, Philippitsch R, Hörhan T (2015) Uran im Grundwasser. Austrian Federal Ministry of Agriculture Forestry Environment and Water Management, Vienna

    Google Scholar 

Download references

Acknowledgements

Funding of this study was provided through a PhD program from the Austrian Institute of Technology. We would like to thank the personnel involved in analytics from the following institutions: Seibersdorf Labor GmbH (hydrochemical analyses and rock chemistry analyses), Austrian Institute of Technology, Geological Survey of Austria - Department of Geochemistry and Department of Hydrogeology and Geothermics (REM analyses, XRF-analyses, heavy liquid separation, radon and hydrochemical analysis), University of Salzburg - Department of Chemistry and Physics of Materials (REM analyses) and Graz University of Technology - Institute of Technology and Testing of Building Materials (BET analyses).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Elster.

Appendices

Appendix 1

See Table 3.

Table 3 Geochemical analyses of bulk rocks

Appendix 2

See Table 4.

Table 4 Heavy liquid separation

Appendix 3

See Fig. 7.

Fig. 7
figure 7

Chemical composition of rocks used for the leaching experiments a distribution of major elements, b distribution of trace elements, c distribution of REEs, d concentration of REEs and U in the separated heavy (> 2.89 g mL−1) and light fraction compared to the whole rock chemistry

Appendix 4

See Table 5.

Table 5 Hydrochemical analysis of natural groundwater

Appendix 5

See Fig. 8.

Fig. 8
figure 8

Chemical composition of typical local groundwater associated with the investigated rocks a distribution of major and chosen trace elements, b distribution of REEs

Appendix 6

See Table 6.

Table 6 Elemental distribution during water–rock interaction experiments with the five sampled rock types under oxidizing conditions (experiment WR2)

Appendix 7

See Table 7.

Table 7 Water–rock interaction experiments under reducing followed by oxidizing conditions for rock type ROM (experiment WR3)

Appendix 8

See Table 8.

Table 8 Preliminary batch water–rock interaction experiments with UHP water and rock powder

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elster, D., Haslinger, E., Dietzel, M. et al. Uranium and Multi-element Release from Orthogneiss and Granite (Austria): Experimental Approach Versus Groundwater Composition. Aquat Geochem 24, 279–306 (2018). https://doi.org/10.1007/s10498-018-9344-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-018-9344-z

Keywords

Navigation